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ABSTRACT

This paper investigates the influence of structural characteristics on the vibration behaviour of a non-homogeneous
rectangular plate with SSSS (simply supported on all sides) boundary conditions. The temperature variation across
the plate is assumed to be linear, while the thickness variation is considered circular along the x-direction. The
Rayleigh-Ritz method is employed to solve the differential equations for the first two vibration modes across
different values of the structural parameter. The numerical results are shown in both tabular and graphical
representations, and the plate is composed of an isotropic, visco-elastic material. MATLAB software is utilized to
compute various parameters of the plate, including the thermal gradient, non-homogeneity, and taper

characteristics.
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INTRODUCTION

Vibration analysis is the process of studying the
oscillation or fluctuations of mechanical structure or
its components. It is basically used to monitor the
health of machinery, detect issues early and improve
efficiency. Vibration analysis plays vital role in the
field of engineering design. Every structure or
component has its natural frequency and if the
operating frequency of the system matches this natural
frequency, it can lead to resonance which causes
excessive vibrations. All engineering machines and
structures having vibration and we cannot ignore the
effect of vibration. Vibration may be detrimental in
structural ~ engineering,  including earthquake
engineering. They could lead to the failure of the
structure. To get around this, a mechanical engineer
must first understand the first few modes of vibration
before coming up with a design. The materials are
being developed to provide greater strength and
efficiency based on requirements, durability, and
reliability. The main objective of vibration research is
to reduce unnecessary and unmanageable vibration by
designing buildings and machines with accuracy and
appropriateness.
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A comprehensive study of the vibration characteristics
of plates, covering theoretical formulations, analytical
solutions, and practical applications, including
rectangular, circular, and annular plates, under
different boundary conditions [1]. Rayleigh Ritz
method is used to solve the differential equation with
linear variation in density and circular variation in
Poisson’s ratio on time period of vibration of
rectangular plate [2]. A nonlinear vibrations of
viscoelastic rectangular plates were investigated by
using Von Karman nonlinear strain-displacement
relationship [3]. The effect of thermal gradient on
vibration of square plate of varying thickness is
studied [4]. Effect of plates parameter on vibration of
isotopic tapered rectangular plate has been studied
under thermal condition [5]. Plate parameters study on
tapered non-homogeneous rectangular plate with
different boundary condition are investigated [6]. In
non-uniform visco-elastic rectangular plate deflection
for first two modes of vibration is calculated for
different values of structural parameters [7]. A study
of characteristics of mechanical vibration of plates
with variable thickness and calculation are carried out
with the help of Matrix laboratory computer software
[8]. A high order triangular plate bending element is
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used in isotropic rectangular plates with linearly
varying thickness in one direction [9]. The study of
frequency and buckling of flexural vibration of
isotropic and orthotropic rectangular plates using
Rayleigh method [10]. An approximate formula for
transverse vibration frequencies of rectangular plates
with various boundary conditions using the Rayleigh
method and validates it against accurate analyses [11].
The wave propagation approach and Hamilton’s
principle to derive natural frequencies of isotropic
plates under various boundary conditions, validated
through MATLAB simulations [12]. An exact solution
for the free vibration of simply supported transversely
isotropic thick plates using displacement potential
functions, validated against analytical and finite
element results for various thickness and aspect ratios
[13].The impact of edge-boundary conditions on the
free vibrations of isotropic and cross-ply laminated
plates using a three-dimensional elasticity-based
formulation, validated against exact and numerical
results [14]. The study conducts static analysis of
isotropic rectangular plates with various boundary
conditions and loads using MATLAB-based finite
element analysis, showing close agreement with
classical exact solutions [15]. The Rayleigh—Ritz
method with specially formulated admissible
functions to analyze the vibration characteristics of
rectangular plates with elastic edge supports,
achieving high accuracy and convergence [16]. This
study analyses the vibrational frequencies of non-
homogeneous parallelogram plates with circular
thickness variations using the Rayleigh—Ritz method,
incorporating effects of temperature, skew angle, and
material non-homogeneity [17]. The effect of linear
thickness variations on the vibration of a viscoelastic
rectangular plate with clamped boundary conditions is
analysed. Using the Rayleigh-Ritz technique,
frequency equations, logarithmic decrement, time
period, and deflection for different modes are
determined[18].

The deflection function is used to determine the modes
of frequency for different values of thermal gradient,
taper constant, and non-homogeneity, as well as
employing aspect ratios of 1.5 and 2.5. The natural
vibration of an isotropic non-homogeneous
rectangular plate with a one-dimensional circularly
variable thickness and density parameter under SSSS
boundary conditions under the distribution of a two-
dimensional temperature field is studied using the
Rayleigh-Ritz technique.
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In the present investigation solution of first two mode
of vibration obtained in rectangular plate made of
duralumin material with circular variation of the
thickness in one direction. Assuming that the plate is
simply supported on all four edges, the numerical
values of the first two modes of the frequency at
various structural parameter values for the SSSS
boundary condition are shown in a tabular and graph
format.
The differential equation of motion of visco-elastic
isotropic plate may be written as [5]
2 2 2 2
A A O
where x and y represent the plate geometry's
coordinates, T, and T, represent the bending moments,
Tyy represents the twisting moment per unit plate
length, p represents the mass per unit volume, h
represents the plate's thickness, and § represents the
displacement at time t.

The expressions for Ty, T, and Ty, are given by [18]

. [ox  o%
Ty = —DD1 m + Va—y2 B
< [0% | 9%
'['y = —DD1 I:ﬁ + Vﬁ] and
5 2%
Ty = =DDi(1-v) ;- )

where D is the representation for visco-elastic
operator. In this case, D; represents the material's
flexural rigidity and is written as[2]

_ ER3
T 12(1-v2)

D, 3
Deflection & can be considered the product of two
functions using the variable separation method[6]

sy, =0 xy) T “)

ASSUMPTION REQUIRED
one dimensional circular variation in thickness as [2]

h=h0[1+[3<1— /1—3—2)] )

where f3, (0 < B < 1) is known as tapering parameter
and thickness of plate becomes constant at x = 0 and
for non-homogeneity (p) consideration, assumed one
dimensional circular variation in Poisson's ratio (v) as
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b
p=po[1+m,, ©) Kg =2P2 [ J; phe dxdy (13)

v=v0[1—m1<1—JT§—§>] (7) e =205 0y < [(52) + (52) +

+2v ‘;“2";‘2+2(1— )( )]dxdy (14)
where m,, (0 <m, < 1) andm; (0 < m; < 1)are

known as non-homogeneit){ constant corresponding The non-dimensional variables are outlined to make
to density and Poisson's ratio. the computation simple and convenient:
The plate is subjected to steady two-dimensional
linear temperature distributions as[3] X=% vy= %, h=" and b= L2 (15)
a a a
t=5(1-%)(1-2) ®) SOLUTION OF FREQUENCY EQUATION

on using the above assumptions along with (15) ;

Therefore the temperature dependent modulus of equation (13) and (14) becomes

elasticity is taken as[5] 1 a rb X
Kg = =p? p0[1+m2—]h0 1
E(D) =Eo(1-yT) ) : f" f" :
2
B =E1- v (1-%) (1-2)] +B(1- ,1—2—2 $2dydx
E() = Eo[1-a(1-%) (1 -] (10)

1 a b[ X]
=—pp2hff 1+m,—||1
2PoP™ho ) ) 23

Where a =71y, (0 <a<1)

X2

BOUNDARY CONDITION +B({1—- [1- 7 b2dydx
For SSSS, the boundary conditions are [6]

2?9

— =0 at x=0,a X

$ = a 2 Substituting X = — | Y= y
and ¢ = =0 at y=0,b a a
x> 02X 0 y=>0=Y=0
The deflection function (i.e. maximum displacement) xosasXo1 yobsy _)E
which satisfy boundary condition given in as:
1 — 1 b/a
Kg = >pop*hy a° 1+ myX][1+

269 =QE0 -0 P L

+B(1-V1-X2)[p%dXdY  (16)

S OOE-HE-9] o

And
where A, and A, are arbitrary constants. 5 5
S = f f D (20
RAYLEIGH RITZ METHOD IN ET ! ax2 dy?
RECTANGULAR PLATE 92 %
We are using Rayleigh Ritz technique (i.e., maximum + 2v 2 a2
strain energy Sg must equal to maximum kinetic y b \2
energy K ) in order to obtain frequency equation and +2(1-v) (ﬂ) dxdy
time period for both modes of vibrations. As a result, 0x 0y
we need to have: it by
a a
8(Sg — Kg) = 0 (12) = oz J - al =X - Y@/
3 92d

The K and Sg formula are provided by [7] b)][l + B(l R Xz)] [(a_i)) +

13



ISSN NO. 2456-3129

International Journal of Engineering, Pure and Applied Sciences,
Vol. 10, No. 2, June- 2025

IJEPAS

(52) +

v (2 )]dXdY 17

02 ¢ ¢

Using equation (15) and (16) in equation (12)
represents the necessary frequency parameter.

8(Sp —A’Kp) =0 (18)
Si=Jy S 1
+B(1-VI =] (21?)

—a(1 = X)(1 = Y(a/b)] [1 +

+ (327@)2 +

+2v‘;‘f‘;‘f+2(1 v (22 ]dXdY (19)
s= 0L [+ mpXI[1+B(1 -
V1 —X2)|d2dXdy (20)

Here expression of the required frequency parameter
is

12pop?a?(1-v?
22 = popE:E(ZE v?) @1

Equation (18) contains two unknown constants, A; and
A which result from the substitution of deflection
function ¢(x, y).

The following formula could be used to determine
these two unknowns:

a * *

After simplifying equation (22) we get system of
homogeneous eq. as

Ci1A; +C5A, =0
and C21A1 + C22A2 =0 (23)

The determinant of the coefficient matrix obtained
from equation (23) must be zero in order to produce a
non-zero solution (frequency equation).

e cal =0 @

After simplifying above equation we get a quadratic
equation in A. With A representing frequency modes

the time period of
2m

IR

derived from equation (24),

frequency modes is computed as

RESULT AND DISCUSSION
Duralumin, an aluminium alloy, is a visco-elastic
material that produces the intended results. The
calculations for Duralumin make use of the following
parameters:

Eo =7.08 x 10'° N/M?,

G= 2.632 % 10" N/M2,
n=14.612 x 105 N s/M2,

po = 2.8 x 10° kg/M?,
v=0.345 and h, = 0.0l M

I)  Foraspect ratios of 1.5 and 2.5, calculations were
carried out for the first two frequency modes for
various values of the thermal gradient (o), non-
homogeneity(m;) and taper parameter (B).

II)  The first two modes of the frequency parameter in

Tables (1) and (4) increase continuously for both
aspect ratios of 1.5 and 2.5 for every fixed value
of the thermal gradient (o) while the taper
parameter (B) increases from 0.2 to 0.6 and non-
homogeneity (my) stays constant at v = 0.345. In
every cases, the first two modes of the frequency
parameter decrease as the thermal gradient (o)
values rise from 0.0 to 0.8.

III) For any fixed value of non-homogeneity (m;) in

Tables (2) and (5), the first two modes of the
frequency parameter increase steadily for both
aspect ratios of 1.5 and 2.5 as the values of the
thermal gradient (o) and taper parameter () rise
from 0.2 to 0.8 with v = 0.345 In every scenario,
the first two modes of the frequency parameter
drop as the non-homogeneity (my) values rise
from 0.0 to 1.0.

IV) InTable (3) and (6), for each fixed value of taper

parameter(p), the first two mode of frequency
parameter decrease continuously for both aspect
ratio 1.5 and 2.5 as value of the thermal gradient
(o) and non-homogeneity(m;) increase from 0.2
to 0.6 with v = 0.345. As the values of the taper
parameter(p) increases from 0.0 to 1.0, the first
two mode of frequency parameter increases for all
cases.
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Tablel. Frequency of simple supported rectangular plate vs Thermal gradient(a) for Aspect Ratio 1.5

B=0.2, my=0v=0.345 | B=0.4, m2=0, v=0.345 | B =0.6, m2=0, v=0.345
o
M A M A M A2
0 | 57.6608 | 430.5953 | 60.2813 448.4819 63.0982 | 467.9346
0.2 | 56.2761 | 420.2152 | 58.9091 438.2127 61.7363 457.7718
0.4 | 54.8564 | 409.5722 | 57.5041 427.6970 60.3435 447.3783
0.6 | 53.3989 | 398.6451 56.0637 | 416.9161 589174 | 436.7375
0.8 | 51.9005 | 387.4099 | 54.5852 | 405.8490 57.4556 | 425.8310
Graphical representation of the table-1:
500
T (a)
450 4 :_“___:—— e
e e e —

400 - T ————— -

- i M {'lst mode of vibration)

' - — = B=02,m,=0,v=0.345
§ gl i L —A—B=04,m,-0, v=0.345
§ A e S =06, m,;=0, v=0345

By L e
«:7 288 s T e Tl Ay (2“d mode of vibration)
- 150+ /}/ 54 R'“«H\_\H"' —e—B=02, m,=0, v=0345
100 4 e % . ¥ P04, m,~0,v—0345
| /-ﬂ._< 0.0 0 04 05 08 806 m-= o
s J & & & N D
0 L) 1 L]
0.0 0.2 0.4 0.6 0.8
Thermal gradient(c)

Figure-1: Thermal gradient vs Frequency

Table2. Frequency of simple supported rectangular plate vs Non-Homogeneity(m:z) for Aspect Ratio 1.5

m: | a=B=0.2,v=0.345 | a=B=0.4,v=0.345 | a=p=0.8, v=0.345
M A2 M A M A

0.0 | 56.2761 | 420.2152 | 57.5041 | 427.6970 | 60.4921 | 447.2278
0.2 | 53.6376 | 400.3576 | 54.7895 | 407.2026 | 57.6012 | 425.2683
0.4 | 51.3386 | 383.0730 | 52.4262 | 389.3980 | 55.0887 | 406.2570
0.6 | 49.3119 | 367.8497 | 50.3446 | 373.7419 | 52.8787 | 389.5878
0.8 | 47.5077 | 354.3082 | 48.4927 | 359.8344 | 50.9150 | 374.8161

1 | 45.8880 | 342.1599 | 46.8312 | 347.3723 | 49.1549 | 361.6071
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Graphical representation of the table-2:
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Figure-2: Non-Homogeneity vs Frequency

Table 3. Frequency of simple supported rectangular plate vs Taper constant(f) for Aspect

Ratio 1.5

B | a=m2=0.2,v=0.345 | a=m,=0.4, v=0.345 | a = m.= 0.8, v=0.345
M A2 M A M A2

0 | 51.3499 | 385.0937 | 47.8525 | 358.8654 | 41.7691 | 313.2434

0.2 | 53.6376 | 400.3576 | 50.0434 | 373.3706 | 43.8139 | 326.6478

0.4 | 56.1282 | 417.2145 | 52.4262 | 389.3980 | 46.0313 | 341.4524

0.6 | 58.8033 | 435.5561 | 54.9830 | 406.8385 | 48.4039 | 357.5465

0.8 | 61.6449 | 4552664 | 57.6962 | 425.5768 | 50.9150 | 374.8161

1 | 64.6361 | 476.2284 | 60.5493 | 445.4976 | 53.5492 | 393.1491

Graphical representation of the table-3:
500
(a) et
450 e
e i
" oI Y Ay (% mode of vibrati
s : i e ) H_A 1 mode of vibration)
[ e T —&—a=m=02, y=0.345
B n
a3 b= 65' (b) —t—a=m= 04, v=0.345
E il ——a=m3=08, v=0345
g 150 [ k// " J
g E T M (2" mode of vibration)
g 200 "l /-///l/ e
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Figure-3: Taper Constant vs Frequency
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Table 4. Frequency of simple supported rectangular plate vs Thermal gradient(a) for Aspect Ratio 2.5

o | p=0.2,m2=0,v=0.345 | B =0.4, m2=0,v=0.345 | B = 0.6, m2=0, v=0.345
M M M A M h
0 46.1175 385.4861 47.9804 397.5019 49.9649 410.1599
0.2 | 44.9965 375.9693 46.8614 387.9363 48.8466 | 400.5400
0.4 | 43.8468 366.2052 45.7149 378.1289 47.7021 390.6833
0.6 | 42.6662 356.1736 44.5389 368.0602 46.5293 380.5715
0.8 | 41.4519 345.8511 43.3309 357.7083 45.3260 370.1835
Graphical representation of the table-4:
500
(a) i
430 el o
el —
szt W il st G
WL iome T il o Ay (1" mode of vibration)
o el i
30 [ sl —#—a=m=02, v=0345
s y —a—g=m= 04, v=0345
2 e &l () . :
7 A ——a=m=08, v=0345
150 a L #
: e’ b
% - 5 g /'j.// L ] }y (27 mode of vibration)
< 9l o aB *a=m=02, v=0345
150 - o :
¥ —v—a=m=04, v=0345
100 o I i y : ; )
_/ B 02 04 06 08 10 —4—a=m= 0.8, v=0.345
30 5 -
N
0 I I ] I
0.0 0.2 04 0.6 08 1.0
Taper Constant(g)

Figure-4: Thermal gradient vs Frequency

Table 5. Frequency of simple su

orted rectangular plate vs Non-Homogenei

m2) for Aspect Ratio 2.5

m | 0=$=0.2,v=0345 | a=p=0.4,v=0.345 | a=p =0.8, v=0.345
M Iy M IV M /¥
0.0 | 44.9965 | 3759693 | 45.7149 | 378.1289 | 47.4270 | 383.2326
0.2 | 42.8868 | 358.2027 | 43.5567 | 360.0103 | 45.1601 364.4183
0.4 | 41.0486 | 342.7381 | 41.6779 | 344.2697 | 43.1900 | 348.1294
0.6 | 39.4281 | 329.1179 | 40.0230 | 330.4285 | 41.4571 333.8471
0.8 | 37.9855 | 317.0022 | 38.5508 | 318.1330 | 399173 | 321.1904
1 36.6905 | 306.1331 | 37.2299 | 307.1155 | 38.5373 | 309.8725
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Graphical representation of the tableS:
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—4—qg=0 =08, v=0345

¥

Figure-5: Non-Homogeneity vs Frequency

Table 6. Frequency of simple supported rectangular plate vs Taper constant(p) for Aspect Ratio 2.5

B | a=m2=0.2,v=0.345 | a=m2=0.4,v=0.345 | a=m2= 0.8, v=0.345
M A2 M A2 M A
0.0 | 41.2485 | 347.7121 | 38.4391 | 324.0298 | 33.5524 | 282.8364
0.2 | 42.8868 | 358.2027 | 39.9998 | 333.8371 | 34.9933 | 291.6077
0.4 | 44.6491 | 369.3479 | 41.6779 | 344.2697 | 36.5404 | 300.9521
0.6 | 46.5258 | 381.1032 | 43.4642 | 355.2836 | 38.1847 | 310.8269
0.8 | 48.5073 | 393.4249 | 45.3494 | 366.8358 | 39.9173 | 321.1904
1 | 50.5845 | 406.2707 | 47.3243 | 378.8849 | 41.7296 | 332.0032
Graphical representation of the table-6:
w04 (a) g 4
el ———
L e
o ‘___.____,f—ﬂd"‘_‘ i (1" mode of vibration)
" e = —#—a=m=02, v=0345
= —h—g=m=04, v=0345
& B 2w %
g - _ /‘,/_/. +-a=m=08, v=0345
g 24
Z x ’/-'//_:,/—/ i @™ wode of vibration)
g g
& 1504 2 e T —+—a=m=01, v=0345
i 7 <y i ——a=m=04, v=0345
/ R TR R =44 "';=“‘8‘ v=0345
SU-E@E'> ; ;_ _-’
0 |} 1 1 1
(2] 0.2 0.4 0.6 0.8 1.0
Taper constant(p)

Figure-6: Taper constant vs Frequency
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CONCLUSION
The frequencies of isotropic rectangular plates with

linear temperature and circular thickness and
density fluctuations were examined in the current
work. From the above result the increase in
tapering constant (f) , results the increase in
frequency A, and A, at different value of thermal
gradient(a) and non-homogeneity (m). But
increase in non-homogeneity (m,) and thermal
gradient (a), results the decrease in frequency.
The variation in frequency mode A; and 2,
weather increasing or decreasing are very slow
because the circular variation implementation. In
the frequencies there is no quick increment or
decrement.
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