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ABSTRACT 

This paper investigates the influence of structural characteristics on the vibration behaviour of a non-homogeneous 
rectangular plate with SSSS (simply supported on all sides) boundary conditions. The temperature variation across 
the plate is assumed to be linear, while the thickness variation is considered circular along the x-direction. The 
Rayleigh-Ritz method is employed to solve the differential equations for the first two vibration modes across 
different values of the structural parameter. The numerical results are shown in both tabular and graphical 
representations, and the plate is composed of an isotropic, visco-elastic material. MATLAB software is utilized to 
compute various parameters of the plate, including the thermal gradient, non-homogeneity, and taper 
characteristics. 
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INTRODUCTION  
Vibration analysis is the process of studying the 
oscillation or fluctuations of mechanical structure or 
its components. It is basically used to monitor the 
health of machinery, detect issues early and improve 
efficiency. Vibration analysis plays vital role in the 
field of engineering design. Every structure or 
component has its natural frequency and if the 
operating frequency of the system matches this natural 
frequency, it can lead to resonance which causes 
excessive vibrations. All engineering machines and 
structures having vibration and we cannot ignore the 
effect of vibration. Vibration may be detrimental in 
structural engineering, including earthquake 
engineering. They could lead to the failure of the 
structure. To get around this, a mechanical engineer 
must first understand the first few modes of vibration 
before coming up with a design. The materials are 
being developed to provide greater strength and 
efficiency based on requirements, durability, and 
reliability. The main objective of vibration research is 
to reduce unnecessary and unmanageable vibration by 
designing buildings and machines with accuracy and 
appropriateness. 

A comprehensive study of the vibration characteristics 
of plates, covering theoretical formulations, analytical 
solutions, and practical applications, including 
rectangular, circular, and annular plates, under 
different boundary conditions [1]. Rayleigh Ritz 
method is used to solve the differential equation with 
linear variation in density and circular variation in 
Poisson’s ratio on time period of vibration of 
rectangular plate [2]. A nonlinear vibrations of 
viscoelastic rectangular plates were investigated by 
using Von Karman nonlinear strain-displacement 
relationship [3]. The effect of thermal gradient on 
vibration of square plate of varying thickness is 
studied [4]. Effect of plates parameter on vibration of 
isotopic tapered rectangular plate has been studied 
under thermal condition [5]. Plate parameters study on 
tapered non-homogeneous rectangular plate with 
different boundary condition are investigated [6]. In 
non-uniform visco-elastic rectangular plate deflection 
for first two modes of vibration is calculated for 
different values of structural parameters [7]. A study 
of characteristics of mechanical vibration of plates 
with variable thickness and calculation are carried out 
with the help of Matrix laboratory computer software 
[8]. A high order triangular plate bending element is 
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used in isotropic rectangular plates with linearly 
varying thickness in one direction [9]. The study of 
frequency and buckling of flexural vibration of 
isotropic and orthotropic rectangular plates using 
Rayleigh method [10]. An approximate formula for 
transverse vibration frequencies of rectangular plates 
with various boundary conditions using the Rayleigh 
method and validates it against accurate analyses [11]. 
The wave propagation approach and Hamilton’s 
principle to derive natural frequencies of isotropic 
plates under various boundary conditions, validated 
through MATLAB simulations [12]. An exact solution 
for the free vibration of simply supported transversely 
isotropic thick plates using displacement potential 
functions, validated against analytical and finite 
element results for various thickness and aspect ratios 
[13].The impact of edge-boundary conditions on the 
free vibrations of isotropic and cross-ply laminated 
plates using a three-dimensional elasticity-based 
formulation, validated against exact and numerical 
results [14]. The study conducts static analysis of 
isotropic rectangular plates with various boundary 
conditions and loads using MATLAB-based finite 
element analysis, showing close agreement with 
classical exact solutions [15]. The Rayleigh–Ritz 
method with specially formulated admissible 
functions to analyze the vibration characteristics of 
rectangular plates with elastic edge supports, 
achieving high accuracy and convergence [16]. This 
study analyses the vibrational frequencies of non-
homogeneous parallelogram plates with circular 
thickness variations using the Rayleigh–Ritz method, 
incorporating effects of temperature, skew angle, and 
material non-homogeneity [17]. The effect of linear 
thickness variations on the vibration of a viscoelastic 
rectangular plate with clamped boundary conditions is 
analysed. Using the Rayleigh–Ritz technique, 
frequency equations, logarithmic decrement, time 
period, and deflection for different modes are 
determined[18]. 

The deflection function is used to determine the modes 
of frequency for different values of thermal gradient, 
taper constant, and non-homogeneity, as well as 
employing aspect ratios of 1.5 and 2.5. The natural 
vibration of an isotropic non-homogeneous 
rectangular plate with a one-dimensional circularly 
variable thickness and density parameter under SSSS 
boundary conditions under the distribution of a two-
dimensional temperature field is studied using the 
Rayleigh-Ritz technique.  

In the present investigation solution of first two mode 
of vibration obtained in rectangular plate made of 
duralumin material with circular variation of the 
thickness in one direction. Assuming that the plate is 
simply supported on all four edges, the numerical 
values of the first two modes of the frequency at 
various structural parameter values for the SSSS 
boundary condition are shown in a tabular and graph 
format. 
The differential equation of motion of  visco-elastic 
isotropic plate may be written as [5] 
பమத౮

ப୶మ + 2
பమத౮౯

ப୶ ப୷
+

பమத౯

ப୷మ = ρh
பమஞ

ப୲మ                              (1) 

where x and y represent the plate geometry's 
coordinates, τ୶ and τ୷ represent the bending moments, 

τ୶୷  represents the twisting moment per unit plate 
length, ρ represents the mass per unit volume, h 
represents the plate's thickness, and  ξ represents the 
displacement at time t. 

The expressions for τ୶, τ୷ and τ୶୷ are given by [18] 

  τ୶ = −D̃Dଵ ቈ
∂ଶξ

∂xଶ
+ ν

∂ଶξ

∂yଶ
቉, 

                       τ୷ = −D̃Dଵ ቂ
பమஞ

ப୶మ + ν
பమஞ

ப୷మቃ  and            

                      τ୶୷ = −D̃Dଵ(1 − ν)
பమஞ

ப୶ ப୷
                  (2) 

where D̃ is the representation for visco-elastic 
operator. In this case, Dଵ represents the material's 
flexural rigidity and is written as[2] 

                       Dଵ =
୉୦య

ଵଶ(ଵି஝మ)
                                    (3)  

Deflection ξ can be considered the product of two 
functions using the variable separation method[6]                          
                      ξ(x, y, t) = ϕ (x, y) ⋅ T(t)                 (4) 

ASSUMPTION REQUIRED 
one dimensional circular variation in thickness as [2] 

              h = h଴ ቈ1 + β ቆ1 − ට1 −
୶మ

ୟమቇ቉              (5) 

where β, (0 ≤ β ≤ 1) is known as tapering parameter 
and thickness of plate becomes constant at x = 0 and 
for non-homogeneity (ρ) consideration,  assumed one 
dimensional circular variation in Poisson's ratio (ν) as 
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                ρ = ρ଴ ቂ1 + mଶ
୶

ୟ
ቃ,                                (6) 

             ν = ν଴ ቈ1 − mଵ ቆ1 − ට1 −
୶మ

ୟమቇ቉           (7) 

where mଶ, (0 ≤ mଶ ≤ 1) and m1 (0 ≤ mଵ < 1)are 
known as non-homogeneity constant corresponding 
to density and Poisson's ratio. 
 The plate is subjected to steady two-dimensional 
linear temperature distributions as[3] 

               τത = τ0ഥ ቀ1 −
୶

ୟ
ቁ ቀ1 −

୷

ୠ
ቁ                          (8) 

Therefore the temperature dependent modulus of 
elasticity is taken as[5] 

       E(τ) = E0(1- γ τത)                                          (9) 

       E(τ) = E0ቂ1-  γ τ0ഥ ቀ1 −
୶

ୟ
ቁ ቀ1 −

୷

ୠ
ቁቃ 

      E(τ) = E0ቂ1- α ቀ1 −
୶

ୟ
ቁ ቀ1 −

୷

ୠ
ቁቃ                   (10) 

Where α = γτ0ഥ , (0 ≤ α < 1) 

BOUNDARY CONDITION 
For SSSS , the boundary conditions are [6] 

         ϕ =
பమம

ப୶మ  = 0  at  x = 0, a                                     

and   ϕ = 
பమம

ப୷మ  = 0  at  y = 0, b 

The deflection function (i.e. maximum displacement) 
which satisfy boundary condition given in as: 

ϕ (x, y) = ቀ
୶

ୟ
ቁ ቀ

୷

ୠ
ቁ ቀ1 −

୶

ୟ
ቁ ቀ1 −

୷

ୠ
ቁ ቂAଵ +

                          + Aଶ ቀ
୶

ୟ
ቁ ቀ

୷

ୠ
ቁ ቀ1 −

୶

ୟ
ቁ ቀ1 −

୷

ୠ
ቁቃ     (11) 

where Aଵ and Aଶ are arbitrary constants. 

RAYLEIGH RITZ METHOD IN 
RECTANGULAR PLATE 
We are using Rayleigh Ritz technique (i.e., maximum 
strain energy S୉ must equal to maximum kinetic 
energy K୉ ) in order to obtain frequency equation and 
time period for both modes of vibrations. As a result, 
we need to have:  
            δ(S୉ − K୉) = 0                                       (12) 

The K୉ and S୉ formula are provided by  [7] 

 K୉ =
ଵ

ଶ
Pଶ ∫  

ୟ

଴
 ∫  

ୠ

଴
 ρhϕ ଶdxdy                             (13) 

S୉ =
ଵ

ଶ
∫  

ୟ

଴
 ∫  

ୠ

଴
 Dଵ × ൤ቀ

பమம 

ப୶మ ቁ
ଶ

+ ቀ
பమம 

ப୷మ ቁ
ଶ

+

        + 2ν
பమம 

ப୶మ

பమம 

ப୷మ + 2(1 − ν) ቀ
பమம 

ப୶ ப୷
ቁ

ଶ

൨ dxdy    (14) 

The non-dimensional variables are outlined to make 
the computation simple and convenient: 

X= 
୶

ୟ
,    Y=  

୷

ୠ
,    hത= 

୦

ୟ
     and    ϕ ഥ = 

ம 

ୟ
                  (15) 

SOLUTION OF FREQUENCY EQUATION 
on using the above assumptions along with  (15) ; 
equation (13) and (14) becomes 

K୉ =
1

2
pଶ න  

ୟ

଴

 න  
ୠ

଴

 ρ଴ ቂ1 + mଶ

x

a
ቃ h଴ ቎1   

+ β ቌ1 − ඨ1 −
xଶ

aଶ
ቍ቏ ϕଶdydx 

=
1

2
ρ଴pଶh଴ න  

ୟ

଴

 න  
ୠ

଴

  ቂ1 + mଶ

x

a
ቃ ቎1

+ β ቌ1 − ඨ1 −
xଶ

aଶ
ቍ቏ ϕଶdydx 

Substituting X =
x

a
                  ቚ                  Y =

y

a
 

x → 0 ⇒ X → 0
x → a ⇒ X → 1

                      

y → 0 ⇒ Y → 0

y → b ⇒ Y →
b

a

 

 K୉ =
ଵ

ଶ
p଴pଶh଴

തതത aହ∫
଴

ଵ
 ∫

଴

ୠ/ୟ
[1 + mଶX]ൣ1 +

                         + β൫1 − √1 − Xଶ൯൧ϕ‾ ଶdXdY         (16) 

And 

S୉ =     
1

2
න  

ୟ

଴

 න  
ୠ

଴

 Dଵ ൥ቆ
∂ଶϕ

∂xଶ
ቇ

ଶ

+ ቆ
∂ଶϕ

∂yଶ
ቇ

ଶ

+ 2ν
∂ଶϕ

∂xଶ

∂ଶϕ

∂yଶ

+ 2(1 − ν) ቆ
∂ଶϕ

∂x ∂y
ቇ

ଶ

൩ dxdy 

=
୉୦‾ బ

యୟయ

ଶସ(ଵି஝మ)
 ∫  

ଵ

଴
 ∫  

ୠ/ୟ

଴
  [1 − α(1 − X)(1 − Y(a/

b)]ൣ1 +           β൫1 − √1 − Xଶ൯൧
ଷ
 ൤ቀ

பమம‾

ப୶మ ቁ
ଶ

+
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   ቀ
பమம‾

ப୷మ ቁ
ଶ

+           2ν
பమம‾

ப୶మ

பమம‾

ப୷మ + 2(1 −

      ν) ቀ
பమம‾

ப୶ ப୷
ቁ

ଶ

൨ dXdY         (17) 

Using equation (15) and (16) in equation (12)   
represents the necessary frequency parameter. 

                   δ(S୉
∗ − λଶK୉

∗ ) = 0                             (18) 

S୉
∗ = ∫  

ଵ

଴
 ∫  

ୠ/ୟ

଴
  [1 − α(1 − X)(1 − Y(a/b)] ൤1 +

         + β൫1 − √1 − Xଶ൧
ଷ

ቀ
பమம‾

ப୶మ ቁ
ଶ

+ ቀ
பమம‾

ப୷మቁ
ଶ

+

           + 2ν
பమம‾

ப୶మ

பమம‾

ப୷మ +2(1 − ν) ቀ
பమம‾

ப୶ ப୷
ቁ

ଶ

൨ dXdY    (19) 

k୉
∗ = ∫  

ଵ

଴
 ∫  

ୠ/ୟ

଴
  [1 + mଶX]ൣ1 + β൫1 −

                          √1 − Xଶ൯൧ϕ‾ ଶdXdY                       (20) 

Here expression of the required frequency parameter 
is  

               λଶ =
ଵଶ஡బ୮మୟమ൫ଵି஝మ൯

୉బ୦‾ బ
మ                                 (21) 

Equation (18) contains two unknown constants, A1 and 
A2 which result from the substitution of deflection 
function ϕ(x, y). 

The following formula could be used to determine 
these two unknowns: 

               
ப

ப୅౤
[S୉

∗ − λଶK୉
∗ ] = 0                             (22) 

After simplifying equation (22) we get system of 
homogeneous eq. as 

CଵଵAଵ + CଵଶAଶ = 0 

                  and CଶଵAଵ + CଶଶAଶ = 0                  (23) 

The determinant of the coefficient matrix obtained 
from equation (23) must be zero in order to produce a 
non-zero solution (frequency equation). 

                   ቚ
cଵଵ cଵଶ

cଶଵ cଶଶ
ቚ = 0                                  (24) 

After simplifying above equation we get a quadratic 
equation in λ . With λ representing frequency modes 

derived from equation (24), the time period of 

frequency modes is computed as       k = 
ଶగ

ఒ
. 

RESULT AND DISCUSSION 
Duralumin, an aluminium alloy, is a visco-elastic 
material that produces the intended results. The 
calculations for Duralumin make use of the following 
parameters: 
                               E0 = 7.08 × 1010 N/M2,  

                            G =  2.632 × 1010 N/M2, 

                            η = 14.612 × 105 N s/M2, 

                            ρ଴ = 2.8 × 103 kg/M3, 

                            ν = 0.345  and   h଴ = 0.01 M 

I) For aspect ratios of 1.5 and 2.5, calculations were 
carried out for the first two frequency modes for 
various values of the thermal gradient (α), non-
homogeneity(m2) and taper parameter (β). 

II) The first two modes of the frequency parameter in 
Tables (1) and (4) increase continuously for both 
aspect ratios of 1.5 and 2.5 for every fixed value 
of the thermal gradient (α) while the taper 
parameter (β) increases from 0.2 to 0.6 and non-
homogeneity (m2) stays constant at ν = 0.345. In 
every cases, the first two modes of the frequency 
parameter decrease as the thermal gradient (α) 
values rise from 0.0 to 0.8.  

III) For any fixed value of non-homogeneity (m2) in 
Tables (2) and (5), the first two modes of the 
frequency parameter increase steadily for both 
aspect ratios of 1.5 and 2.5 as the values of the 
thermal gradient (α) and taper parameter (β) rise 
from 0.2 to 0.8 with ν = 0.345 In every scenario, 
the first two modes of the frequency parameter 
drop as the non-homogeneity (m2) values rise 
from 0.0 to 1.0.  
 

IV) In Table (3) and (6),  for each fixed value of taper 
parameter(β), the first two mode of frequency 
parameter decrease continuously for both aspect 
ratio 1.5 and 2.5 as value of the thermal gradient 
(α) and non-homogeneity(m2)  increase from  0.2 
to 0.6 with ν = 0.345. As the values of the taper 
parameter(β) increases from 0.0 to 1.0, the first 
two mode of frequency parameter increases for all 
cases. 
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Table1. Frequency of simple supported rectangular plate vs Thermal gradient(α) for Aspect Ratio 1.5 

 
 

α 

β = 0.2, m2 = 0 𝛎=0.345 β = 0.4, m2 = 0, 𝛎=0.345 β = 0.6, m2 = 0, 𝛎=0.345 

λ1 λ2 λ1 λ2 λ1 λ2 

0 57.6608 430.5953 60.2813 448.4819 63.0982 467.9346 

0.2 56.2761 420.2152 58.9091 438.2127 61.7363 457.7718 

0.4 54.8564 409.5722 57.5041 427.6970 60.3435 447.3783 

0.6 53.3989 398.6451 56.0637 416.9161 58.9174 436.7375 

0.8 51.9005 387.4099 54.5852 405.8490 57.4556 425.8310 

 

Graphical representation of the table-1: 

 

Figure-1: Thermal gradient vs Frequency 

 

Table2. Frequency of simple supported rectangular plate vs Non-Homogeneity(m2) for Aspect Ratio 1.5 

m2 α = β = 0.2, 𝛎 = 0.345 α = β = 0.4, 𝛎 = 0.345 α = β = 0.8, 𝛎 = 0.345 

 λ1 λ2 λ1 λ2 λ1 λ2 

0.0 56.2761 420.2152 57.5041 427.6970 60.4921 447.2278 

0.2 53.6376 400.3576 54.7895 407.2026 57.6012 425.2683 

0.4 51.3386 383.0730 52.4262 389.3980 55.0887 406.2570 

0.6 49.3119 367.8497 50.3446 373.7419 52.8787 389.5878 

0.8 47.5077 354.3082 48.4927 359.8344 50.9150 374.8161 

1 45.8880 342.1599 46.8312 347.3723 49.1549 361.6071 
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Graphical representation of the table-2: 

 

     

 

 

 

 

 

 

 

 

 

Figure-2: Non-Homogeneity vs Frequency 

Table 3. Frequency of simple supported rectangular plate vs Taper constant(β) for Aspect     Ratio 1.5 

β α = m2 = 0.2, 𝛎=0.345 α = m2 = 0.4, 𝛎=0.345 α = m2 = 0.8, 𝛎=0.345 
 λ1 λ2 λ1 λ2 λ1 λ2 

0 51.3499   385.0937 47.8525 358.8654 41.7691   313.2434 
0.2 53.6376 400.3576 50.0434 373.3706 43.8139 326.6478 
0.4 56.1282   417.2145 52.4262   389.3980 46.0313 341.4524 
0.6 58.8033 435.5561 54.9830 406.8385 48.4039 357.5465 
0.8 61.6449   455.2664 57.6962 425.5768 50.9150 374.8161 
1 64.6361 476.2284 60.5493 445.4976 53.5492 393.1491 

Graphical representation of the table-3: 

 

 

 

 

 

 

 

 

 

 

 

Figure-3: Taper Constant vs Frequency 



ISSN NO. 2456-3129  

 
International Journal of Engineering, Pure and Applied Sciences,  

Vol. 10, No. 2, June- 2025 
 

17 
 

Table 4. Frequency of simple supported rectangular plate vs Thermal gradient(α) for Aspect Ratio 2.5 

 

α β = 0.2, m2 = 0, 𝛎=0.345 β = 0.4, m2 = 0, 𝛎=0.345 β = 0.6, m2 = 0, 𝛎=0.345 
λ1 λ2 λ1 λ2 λ1 λ2 

0 46.1175 385.4861 47.9804 397.5019 49.9649 410.1599 
0.2 44.9965 375.9693 46.8614 387.9363    48.8466 400.5400 
0.4 43.8468 366.2052 45.7149 378.1289 47.7021 390.6833 
0.6 42.6662 356.1736 44.5389 368.0602 46.5293 380.5715 
0.8 41.4519 345.8511 43.3309 357.7083 45.3260 370.1835 

 

Graphical representation of the table-4: 

 

Figure-4: Thermal gradient vs Frequency 

 

Table 5. Frequency of simple supported rectangular plate vs Non-Homogeneity(m2) for Aspect Ratio 2.5 

 

m2 α = β = 0.2, 𝛎 = 0.345 α = β = 0.4, 𝛎 = 0.345 α = β  = 0.8, 𝛎 = 0.345 
 λ1 λ2 λ1 λ2 λ1 λ2 

0.0 44.9965 375.9693 45.7149 378.1289 47.4270 383.2326 
0.2 42.8868 358.2027 43.5567 360.0103 45.1601 364.4183 
0.4 41.0486 342.7381 41.6779 344.2697 43.1900 348.1294 
0.6 39.4281 329.1179 40.0230 330.4285 41.4571 333.8471 
0.8 37.9855 317.0022 38.5508 318.1330 39.9173 321.1904 
1 36.6905 306.1331 37.2299 307.1155 38.5373 309.8725 
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Graphical representation of the table5: 

 

Figure-5: Non-Homogeneity vs Frequency 

Table 6. Frequency of simple supported rectangular plate vs Taper constant(β) for Aspect    Ratio 2.5 

β α = m2 = 0.2, 𝛎=0.345 α = m2 = 0.4, 𝛎=0.345 α = m2 = 0.8, 𝛎=0.345 
 λ1 λ2 λ1 λ2 λ1 λ2 

0.0 41.2485 347.7121 38.4391 324.0298 33.5524 282.8364 
0.2 42.8868 358.2027 39.9998 333.8371 34.9933 291.6077 
0.4 44.6491 369.3479 41.6779 344.2697 36.5404 300.9521 
0.6 46.5258 381.1032 43.4642 355.2836 38.1847 310.8269 
0.8 48.5073 393.4249 45.3494 366.8358 39.9173 321.1904 
1 50.5845 406.2707 47.3243 378.8849 41.7296 332.0032 

 

Graphical representation of the table-6: 

 

 

 

 

 

 

 

 

 

 

 

Figure-6: Taper constant vs Frequency 
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CONCLUSION 
The frequencies of isotropic rectangular plates with 

linear temperature and circular thickness and 
density fluctuations were examined in the current 
work. From the above result  the increase in 
tapering constant (β) , results the increase in 
frequency λଵ and λଶ at different value of thermal 
gradient(α) and non-homogeneity (m2). But 
increase in non-homogeneity (mଶ) and  thermal 
gradient (α), results the decrease in frequency. 
The variation in frequency mode λଵ and λଶ 
weather increasing or decreasing are very slow 
because the circular variation implementation. In 
the frequencies there is no quick increment or 
decrement. 
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