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ABSTRACT

The vibration properties of a non-homogeneous orthotropic rectangular plate with circularly variable thickness
and temperature are investigated in this work. To accommodate for non-homogeneity, the plate’s material density
is considered to fluctuate linearly in the x-direction. The general differential equation governing the orthotropic
rectangular plate's behavior is solved using the Rayleigh-Ritz Method. The resultant equations provide the
frequencies for the first two vibration modes. Under clamped boundary conditions, a number of structural
characteristics are examined, such as aspect ratio, non-homogeneity, thermal gradient and taper constant. All
calculations are performed using MATLAB, and the results are presented through graphs and tables.

KEY WORDS: Orthotropic rectangular plate, taper parameter, circular thickness variation, clamped boundary condition

and linear density.

1. INTRODUCTION

Vibrations in machinery play a crucial role in modern
technology. It is associated with daily aspects of life
which include our working and living life style. This
vibration is used in airway, roadway, marinas and other
source of technical fields. The effect on vibration plays
an important role weather it is a large or small. Due to
the effect on vibration, temperature and density of a
machine vary with deflection in the wings of helicopter
and strain the structure of the transport vehicles. The
effect of temperature and density in vibration with high
level thickness material can be used in various field
engineering, marines, power plants, aeronautical,
chemical such as nuclear. Non homogeneity in
orthotropic rectangular plate in visco elastic material
plays an important role in gas turbines, space craft and
engineering field. In orthotropic material a lot of work
is done by using the different variation in plates. But a
less work has done in orthotropic plate with effect of
circular variation which includes the linear density. In
the present day all the machine variation have the
common design. We need such type of structure which
is better in designing and also easy to analyzing. To get
the better strength and durability, we need to develop
the design with low expense and low in weight. In the
field of space and technology large machine are design
in such a way that it can avoid the harmful vibration
which saves us from earthquake, electronic
components and smokestacks. In orthotropic
rectangular plate needs a controlling vibration effect

which is due to the effect of temperature and density
helps in building construction, paper industry and
space shuttles. Thus we have to maintain the vibration
of the plate and it should be free from unwanted and
harmful elements which cause the fatigues.

Many researchers studied different type of plates such
as elliptical, rectangular and circular with different
thickness and temperature. Plates with different type of
thickness variation and boundary condition are
analyzed [1]. Reference is made to a viscoelastic
rectangular plate with thickness that follows a
parabolic distribution. While significant research
exists on the elastic and inelastic behavior of materials,
limited studies have focused on viscoelastic bodies
with varying bearing thickness. This study examines
how the taper constant influences the free vibration of
a clamped viscoelastic rectangular plate featuring
featuring a parabolic variation in thickness [2]. The
effect of thermal gradient on vibration of clamped
boundary condition with thickness variation varies
linear and parabolic analyzed [3]. This research was
conducted to minimize the natural frequencies of the
plate and examine how changes in plate parameters
impact these values. To support the study’s objective,
numerical examples are provided along with a
comparative evaluation against existing results. Two
dimensional circular thicknesses are obtained by using
Ritz method in a rectangular plate [4]. An analysis of
the forced vibration of a non-homogeneous rectangular
plate with thickness that changes linearly is carried out
using classical plate theory. The material is regarded
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as non-homogeneous due to a linear change in its
density. To evaluate the structural response,
approximate deflection of the plate under a uniformly
distributed harmonic lateral load [5]. This study
analyzed the non homogeneity of visco elastic material
varying thickness with thermal effect [6]. The
transverse vibration behavior of a rectangular plate
with thickness variation is investigated under multiple
boundary condition scenarios at its edges. The model
captures thickness changes in two directions as the
Cartesian product of linear variations along two
adjacent sides, employing the Rayleigh-Ritz method
with suitable trail functions and iterative successive
approximations.. A comprehensive numerical analysis
is conducted to calculate the first three natural
frequencies [7]. The vibration of exponential variation
in non homogeneity discussed with a rectangular plate
[8]. Behavior of the vibration of clamped rectangular
plate with linear thickness in both directions has been
studied [9]. The study calculates the vibration
properties of an orthotropic rectangular plate featuring
thickness variation and subjected to temperature
changes. The influence of thermal stresses and material
anisotropy on the natural frequencies and mode shapes
has been analyzed [10]. Using thin plate theory and
two-dimensional viscoelastic constitutive equations,
the governing differential equation is formulated for a
viscoelastic plate with linear thickness variation and
multiple through-cracks. Expression for the additional
rotational angles caused by the cracks is also derived.
The material is assumed to exhibit elastic behavior
under dilation, while its distortion follows the Kelvin-
Voigt model [11]. A double trigonometric series is
used to derive an analytical expression for the
characteristic equation of a clamped orthotropic
rectangular plate with thickness variation in a single
direction parallel to its sides. Utilizing the fundamental
natural frequency obtained from this equation, a
numerical formula is proposed to estimate the
fundamental frequency of the clamped orthotropic
plate [12].  An analytical approach based on
superposition yields an accurate solution for the free
vibration of a fully free orthotropic rectangular plate.
For a particular case representing reinforced and
composite like materials, eigen values for 12 vibration
modes are provided across a wide spectrum of plate
aspect ratios. Although it is not possible to present
results for all potential scenarios, the data includes a
broad and representative selection of cases [13]. This
study gave an analysis to the vibrational of a visco-
elastic parallelogram plate featuring a parabolic
thickness profile [14]. Vibration analysis of a non-
uniform, orthotropic rectangular plate with variable
thickness is performed using the Rayleigh-Ritz method
within the framework of classical plate theory. The
approach  involves applying two-dimensional

orthogonal polynomials for boundary characteristics,
produced through the Gram-Schmidt technique. The
plate undergoes uniformly distributed in plane loading
on opposite edges, featuring a clamped boundary on
one side and a simply supported boundary on the other.
The material non-homogeneity is attributed to a linear
variation in both the elastic properties and density
within the plane coordinates [15]. An analysis is
performed on the transverse vibrations of an
orthotropic, non-homogeneous viscoelastic circular
plate featuring a radially parabolic bead thickness
distribution. The non-homogeneity is modeled by
assuming a linear variation in material density with
respect to the radius. Using two-term deflection
function is formulated through the Rayleigh-Ritz
method [16]. Non-homogeneity along two adjoining
edges is considered in the study of free vibration
behavior in a thin rectangular plate. Linear variation is
applied to both the modulus of elasticity and the
density of the plate. Finite difference method has been
applied [17]. To analyze the natural vibration behavior
of clamped orthotropic rectangular plates, the extended
Kantorovich method is applied. The employed dual
iterative procedure converges quickly to accurate
results. In the absence of exact analytical solutions for
such plates, the obtained results show strong
agreement with available data. The derived closed
form expressions for natural modes and their
corresponding  frequencies are well suited for
engineering analysis and practical applications [18].
With deep analysis to the orthotropic rectangular plate
with two dimensional temperature and thickness
variation has been analyzed [19]. The exact solution
for free vibration of thin orthotropic rectangular plates
studied [20]. Effect of the non-homogeneous
rectangular plate with parabolically thickness in both
direction and exponentially temperature distribution
has been analyzed [21]. Researchers previously
mentioned analyzed the vibration of orthotropic
rectangular plates considering specific values for
thickness and temperature. However, some work is
done with linear temperature in both x and y
dimensions, respectively and circular thickness in x-
direction. Our current work’s primary goal is to
investigate the linearly varying temperature influence
on the x-direction vibrations of an orthotropic
rectangular plate with circular thickness subjected to
clamped boundary conditions along all edges are
examined.

By leveraging a deflection function within the
Rayleigh-Ritz framework; the motion equation is
resolved, leading to the calculation of frequency
parameters for the first two vibration modes. Density
varies linear with circular thickness in one dimension
and temperature in both directions. Thermal gradient is
denoted by (A) and taper parameter with (B). Also non
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homogeneity is denoted by (my). Graphical and
tabular data present the impact of non-homogeneity,
aspect ratio, temperature gradient and the taper
constant.

The differential equation of motion of visco-elastic
orthotropic rectangular plate may be written as

My 0%Myy " 2My . 92W

ox2 axdy dy? otz @

Here My, My, and My, represent the bending moments
and the twisting moment per unit length acting on the
plate in the x-direction and y-direction, respectively. p
be the material’s mass density, h is the plate’s
thickness, and w indicates its displacement as a
function of time t. The terms My, My and M,, are
given as:

*w | 9°w

+v

My =-D Dy G5 +v o]

9 2w | 9*w
M, =-D D[~ +
y 1[ 6y2 v 9x2 ]

R

My,=D D, (1-v) Pyon”

2

where D is the representation for visco-elastic operator.

KB BB
X T a(1-vgvy) TV T 12(1-vgvy)

D.. = Gyyl®
XY T 12(1-vgvy)

3
D; = vy Dy(= v4Dy), the symbol D represents the
Rhelogical operator,

Deflection w can be considered the product of two
functions using the variable separation method

w(xy,H)= W(x,y) T(®). “4)

2. ASSUMPTION REQUIRED
assuming that the plate’s thickness], varies in a
circular fashion in one dimension, i.e.,

l=10[1+B<1— /1—§)] )

Where B is a taper constant. We assume a one-
dimensional linear fluctuation in density for non-
homogeneity consideration, as

p=po(1+m,?2) ©)

Where the non- homogeneity constants is denoted by
m;,0<m; <1

Consider a plate subjected to a continuous two-
dimensional linear temperature distribution

(96D o

E; and E, denote the Young’s moduli along the x-and
y-axes, respectively, evaluated at the reference
temperature T = 0. The coefficient a characterizes the
rate of change of the elastic modulus with respect to ,
this change in modulus can be expressed as:

B =E [1-A(1-%)(1-2)]
B, =E [1-a(1-%)(1-2)]

Gy (D) =Gy [1-A(1-%)(1-2)] ®)
Where the temperature gradient parameter is denoted
by A= a1ty (0<A<1).

3. CLAMPED BOUNDARY CONDITION

The clamped boundary conditions are W = 0 and 2—‘:

a
=0,atx=0, a; —W=Oaty=0,a.
ay

A two-term deflection function is assumed to satisfy
the expression as:

ween = (=) 0-2) ][+
ROOE0-D

where A; and A, are arbitrary constants.

4. RAYLEIGH RITZ METHOD WITH
RECTANGULAR PLATE

The Rayleigh Ritz method aims to ensure that the
system’s maximum potential (strain) energy is equals
to its maximum kinetic energy, which can be succinctly
stated as:

5(S—K) = 0. (10)
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The strain energy and kinetic energy for plate vibration
are expressed as:

S =
NN 0 (5) + 0, (55) + 201+ dxdy
T G EH e (B

(11)
And  K=2P2p [ [7 1W? dxdy. (12)

The non-dimensional variables are introduce here to
make our assumption simple and satisfied.

X=X y=12
a’ a’
* E1 * E:2
Er = (1-vxvy)”’ E; (1-vyvy) and
E*=v E;= VyE;. (13)

5. SOLUTION OF FREQUENCY EQUATION
By using equation (13), along with (10), (11) and (12),
we get

8-k =2 [1—A(1—5)(1—%)] [1+

B( 1——)] [ ) "Zy) +

2
2 fo ZX‘;VZYW (1 v Vy)( V\;) ]dxdy -

d [ fob(1+m1§)[1+8<1—

1- a—z)] W2dxdy = 0.

The limits are now set as X varying between 0 to 1, and

(14)

Y between 0 and 2, respectively. By replacing the

values of S & K in equation (14) with the help of
equation (10), we obtain
(S; —d?K;) = 0. (15)

Thus we have value for S7 and Kj define as:

b
w=3f [h-na-n(-%)
=g | [r-aa-w(1-3
3
*[1+B( ‘/1—X2)]
2W\*  Ej (92W\
== +
0x? E7 ay?
E; 02W 02W
p A
E] 0x2 0y?
+4—(1

ZW 2
~Vety) ox dy

dxdy. (16)

And

1,0b
Ki =Sy fy (1 +mX) [1

+B (1 —J1i- XZ)] W2dxdy.

W)
Where

_ 1 E 1p° 5 _ 12P%a*p(1-vyvy)
Q=3 12(1-vyvy) and d* = Eqlo? :
The unknown A; & A, in equation (15) result from the
substitutions of W from equation (9). The following
formula must be used to determine these two constants:

a * *

E[S1 —d?K;] =0, n=1, 2. (18)
Equation (18) can be simplified to provide the
following form

qu A1 + qu AZ = 0 (19)
The parametric constants and the frequency parameter
are involved in Cq; & Cg, where q=1, 2. When the
coefficients of equation (19) are determined to be non-

zero, they must disappear. In this manner, the
frequency equation was

|C11 C12

=0.
C21 C22|

(20)

By solving equation (20), one obtains a quadratic
equation in d?, yielding two roots. When A; =1 is
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chosen to be substituted in equation (9), A, = — 21—1 is
12

obtained, and W becomes

wou = (O -D0-) |- [+
(=2)OE0-)0-)] an

Furthermore, it can be written as:

W(x,y) = [(XY%(l - X) (1 - %Y))Z] * [1 +
(—2—:) X2 -x (1 —%Y)].

6. RESULT AND DISCUSSION

Duralumin’ is a mixture of copper, magnesium,
manganese and aluminium that we have used. To
calculate the material properties, we use the thermal
gradient (A), taper constant (B), non- homogeneity
(m,) and the aspect ratio (a/b) at different positions for
the first two vibration modes, (d;and d,).

Our computation makes use of the following material
parameters:

B2 _032,
Ej
E o 0.04,
El

% =0.09, E=7.08x 10710,
1

po = 2.80x% 1073, Gy =2.632x 10710, v = 0.345, a=3,
5 and b=2.

We have considered the orthotropic rectangular plate
having circular variation in x-direction with thermal
effect in which temperature is linear in both direction
and density varies linear. Frequency values for the first
two modes are computed using the Matlab software
tool and the Rayleigh Ritz method. The results are
presented and analyzed in the tables below. The
length-to-breadth ratio of the plate is 1.5 and 2.5,
respectively.

Tablel, 2 and 3 illustrate the frequency for the initial
two modes of thermal gradient (A), non homogeneity
(m,), and taper constant (B), respectively.

e In Tablel for thermal gradient (A) we take
values (B=m;=0.2, v=0.345, B=m;=0.4,
v=0.345, B=m;=0.8, v=0.345).

e In Table2 for non homogeneity (m;) we take
values (A=B=0.2, v=0.345, A=B=0.4, v=0.345,
A=B=0.8, v=0.345).

In Table3 for taper parameter (B) we take values
(A=m;=0.2, v=0.345, A=m,;=0.4, v=0.345,
A=m;=0.8, v=0.345).

In Tablel and Table2, both thermal gradient (A)
and non homogeneity parameter ( m,), increases
horizontally to the right at various points ranging
from 0.2 to 0.8.

Table3 now shows a thermal gradient (A) with non

homogeneity (mi) for the values (A=m;=0.2,

A=m;=0.4 and A=m;=0.8), as well as a taper

parameter (B) ranging from 0.0 to 1.0.

e Tapering parameter (B) increases, so do the
frequency mode values d, and d, .It is evident that
when the frequency mode d; and d,, listed in
Table3, increase as taper parameter (B) is varied
from 0.0 to 1.0, whereas in Tablel and Table2, the
frequency mode values d; and d, decrease as
thermal gradient and non-homogeneity rise within
the range of 0.0 to 1.0.

e In Table3 taper parameter (B) has the highest
values of frequency d;and d, at A=m;=0.2, at
B =1.0.

e  While in Tablel and Table2 has the highest values

of frequency d; and d, in thermal gradient and

non homogeneity respectively are B=m;=0.8, at

A=0.0 and A=B=0.8, at m;=0.0.

Table4, 5 and 6 illustrate the frequency for the initial
two modes for an aspect ratio of 2.5 relate to thermal
gradient (A), non homogeneity (m; ) and taper constant
(B), respectively.

e In Table4 for thermal gradient (A) we take values
(B=m;=0.2, v=0.345, B=m;=0.4, v=0.345,
B=m;=0.8, v=0.345).

e In Table5 for non homogeneity (m;) we take
values (A=B=0.2, v=0.345, A=B=0.4, v=0.345,
A=B=0.8, v=0.345).

e In Table6 for taper parameter (B) we take values
(A=m;=0.2, v=0.345, A=m,=0.4, v=0.345,
A=m;=0.8, v=0.345).

e From Table4 thermal gradient (A), frequency
mode values d;andd,, decreases when we
increase it from (0.0 to 0.8) at different stage
(B=m;=0.2,v=0.345, B=m;=0.4,v=0.345,
B=m;=0.8, v=0.345). But values also horizontally
decreased when we gradually increase the taper
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constant (B) and non homogeneity (m;) from 0.2
to 0.8.

From Table5 non homogeneity (m,), frequency
mode values d, and d,, decreases vertically when
we increase it from (0.0 to 1.0) at different stage
(A=B=0.2, v=0.345, A=B=0.4, v=0.345,
A=B=0.8, v=0.345). As thermal gradient (A) and
taper constant (B) increase from 0.2 to 0.8, values
show a horizontal increase.

From Table6 taper constant (B), frequency mode
values d; and d,, increases vertically when we
increase it from (0.0 to 1.0) at different stage (A=
m;=0.2, v=0.345, A= m;=0.4, v=0.345, A=
m;=0.8, v=0.345). The mode values decrease

along the horizontal direction as thermal gradient
(A) and non homogeneity (m, ) increase between
0.2t0 0.8.

All the three Tables 4, 5 and 6 shows the different
behaviour for their mode values d; and d,. Table4
mode values d, and d, decrease in both sides at
different stages. Table5 mode values d,andd,
decreases in vertically side and increases in
horizontally side at different stages. Table6 mode
values d; and d, increases in vertically side and
decreases in horizontally at different stages.

Table-1. Thermal gradient (A) vs Frequency (d) of clamped rectangular plate for Aspect Ratio 1.5

A B=m;=0.2,v=0.345 B=m;=0.4, v=0.345 B= m=0.8,v=0.345
dq dz di dz di d2
0.0 46.2992 185.7404 46.4354 186.1372 47.2641 189.6615
0.2 45.1911 181.3104 45.3846 181.9717 46.3010 185.9494
0.4 44.0551 176.7695 44.3085 177.7087 45.3159 182.1620
0.6 42.8888 172.1088 43.2051 173.3410 44.3072 178.2946
0.8 41.6897 167.3184 42.0721 168.8606 43.2729 174.3419
Graph-1. Constant aspect ratio of 1.5, Thermal gradient (A) versus Frequency (d)
o - 190 T~ -
a6 =5"~'-‘;:;;.._~ . 185 '5"":::::: x..-.'l‘"--x -
=as | - il ‘“'-l‘;-;;::_\._ i
= e S 180 i =
% 44 ~ e % M.\:“:;"-\ M‘“‘“-x
= -—d,(B=m,=0.2)| H::‘x " T % = s - d (B=m,=0.2 e~ o )
of BESmml T 1T | B T
. ‘“x:' 170 | RH\ .
- "“x..‘. \':
41 "‘ L 4. 165 L L L
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 (A -1
Thermal gradient A, (a) Thermal gradient A, (b)
Table-2. Non-homogeneity (m;) vs Frequency (d) of clamped rectangular plate for Aspect Ratio 1.5
m; A=B=0.2, v=0.345 A=B=0.4, v=0.345 A=B=0.8, v=0.345
di d2 di dz di d2
0.0 47.4079 190.2620 48.5773 195.0416 51.3319 207.559
0.2 45.1911 181.3104 46.2959 185.7713 48.9031 197.5105
0.4 43.2588 173.5141 44.3085 177.7087 46.7895 188.7928
0.6 41.5550 166.6440 42.5570 170.6123 44.9283 181.1364
0.8 40.0388 160.5303 40.9980 164.3034 43.2729 174.3419
1.0 38.6756 155.0437 39.5987 158.6464 41.7881 168.2590
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Graph-2. Constant aspect ratio of 1.5, Non-homogeneity constant (m,) versus Frequency (d)
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Table-3. Taper constant (B) vs Frequency (d) of clamped rectangular plate for Aspect Ratio 1.5
B A=m=0.2, v=0.345 A=m1=0.4, v=0.345 A=m1=0.8, v=0.345
di dz di dz di dz
0.0 43.1471 173.3386 40.2084 161.5327 35.0968 140.9973
0.2 45.1911 181.3104 42.1714 169.1683 36.9358 148.1418
0.4 47.4203 190.2276 44.3085 177.7087 38.9289 156.1225
0.6 49.8073 200.0321 46.5928 187.0947 41.0492 164.8782
0.8 52.3263 210.6572 48.9990 197.2598 43.2729 174.3419
1.0 54.9545 222.0329 51.5054 208.1345 45.5805 184.4455
Graph-3. Constant aspect ratio of 1.5, Tapering constant (B) versus Frequency (d)
55— . : _a 220 AR 1
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apering constant B, (a)

Tapering constant B, (b)

Table-4. Thermal gradient (A) vs Frequency (d) of clamped rectangular plate for Aspect Ratio 2.5

A B=m;=0.2,v=0.345 B=m;=0.4, v=0.345 B= m=0.8,v=0.345
di d2 dy d2 d; d;
0.0 36.5347 147.6456 36.1889 145.7340 35.8758 143.4432
0.2 35.6333 143.9953 35.3190 142.2184 35.0569 140.1534
0.4 34.7085 140.2500 34.4272 138.6137 34.2183 136.7845
0.6 33.7583 136.4019 33.5115 134.9127 33.3584 133.3306
0.8 32.7806 132.4420 32.5701 131.1073 32.4755 129.7848
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Graph-4. Constant aspect ratio of 2.5, Thermal gradient (A) versus Frequency (d)
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Table-5. Non-homogeneity (m;) vs Frequency (d) of clamped rectangular plate for Aspect Ratio 2.5

mi A=B=0.2, v=0.345 A=B=0.4, v=0.345 A=B=0.8, v=0.345

di dz dy d2 di dz
0.0 37.3812 151.1045 37.7439 152.1320 38.5252 154.4989
0.2 35.6333 143.9953 35.9713 144.9019 36.7018 147.0229
04 34.1098 137.8035 34.4272 138.6137 35.1151 140.5370
0.6 32.7664 132.3474 33.0663 133.0789 33.7180 134.8404
0.8 31.5701 127.4920 31.8551 128.1584 32.4755 129.7848
1.0 30.4961 123.1345 30.7680 123.7462 31.3611 125.2585

Graph-5. Constant aspect ratio of 2.5, Non homogeneity constant (m;) versus Frequency (d)
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Table-6. Taper constant (B) vs Frequency (d) of clamped rectangular plate for Aspect Ratio 2.5

B A=m=0.2, v=0.345 A=m=0.4, v=0.345 A=m;=0.8, v=0.345
di d2 di d2 di d2

0.0 34.4286 139.5874 32.0837 130.0803 28.0050 113.5434
0.2 35.6333 143.9953 33.2245 134.2192 29.0429 117.2628
0.4 36.9032 148.6702 34.4272 138.6137 30.1369 121.2181
0.6 38.2336 153.5990 35.6872 143.2506 31.2826 125.3966
0.8 39.6198 158.7678 36.9998 148.1163 32.4755 129.7848
1.0 41.0569 164.1620 38.3604 153.1964 33.7111 134.3691
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CONCLUSION

This study presents the results of an investigation into
the frequency distribution of orthotropic rectangular
plates subjected to linear temperature changes and
circular fluctuations in density and thickness. The rise
in thermal (A), as shown in Tablel, from 0.0 to 0.8, it
increases horizontally and decrease vertically for
different values of Taper constant (B) and non
homogeneity (m;) at B=m;=0.2, B=m;=0.4,
B=m;=0.8. However, Table2 and Table5 show a same
behaviour for increase and decrease in frequency for
temperature gradient (A) and non-homogeneity (m,).
Table3 and Table6 also behave in a similar manner for
taper constant (B) from 0.0 to 1.0 at different values of
A=m;=0.2, A=m;=0.4 and A=m;=0.8. Table4 decrease
vertically and horizontally for different mode values at
B=m;=0.2, B=m;=0.4 and B=m;=0.8, where thermal
gradient (A) varies from 0.0 to 0.8. The frequency
changes in modes d; and d,, weather increasing or
decreasing, happen very slowly due to the way the
circular variation is implemented. Temperature
variations, non-homogeneity and tapering significantly
influence the vibration behaviour of plates. All
mechanical and engineering structure can’t be
imagining without the role of these elements. Our
research utilizes a machine framework to examine the
impact of temperature material, non-homogeneity and
tapering. A mathematical model with linear

Tapering

constant (B) versus Frequency (d)
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150
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£
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120
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temperature and circular thickness can use in marine
engineering, optical elements and latest applications.
We need a design structure which can balanced the
natural frequency and make a suitable mode variation,
so our plate material becomes less weight and reduce
the unwanted vibration. Hence in a good mechanical
structure you need to know the effect of temperature,
homogeneity and tapering in a plate material, and our
study will helps that process.
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