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ABSTRACT 

The vibration properties of a non-homogeneous orthotropic rectangular plate with circularly variable thickness 
and temperature are investigated in this work. To accommodate for non-homogeneity, the plate’s material density 
is considered to fluctuate linearly in the x-direction. The general differential equation governing the orthotropic 
rectangular plate's behavior is solved using the Rayleigh-Ritz Method. The resultant equations provide the 
frequencies for the first two vibration modes. Under clamped boundary conditions, a number of structural 
characteristics are examined, such as aspect ratio, non-homogeneity, thermal gradient and taper constant. All 
calculations are performed using MATLAB, and the results are presented through graphs and tables. 

KEY WORDS: Orthotropic rectangular plate, taper parameter, circular thickness variation, clamped boundary condition 
and linear density. 
 
1. INTRODUCTION  
Vibrations in machinery play a crucial role in modern 
technology. It is associated with daily aspects of life 
which include our working and living life style. This 
vibration is used in airway, roadway, marinas and other 
source of technical fields. The effect on vibration plays 
an important role weather it is a large or small. Due to 
the effect on vibration, temperature and density of a 
machine vary with deflection in the wings of helicopter 
and strain the structure of the transport vehicles. The 
effect of temperature and density in vibration with high 
level thickness material can be used in various field 
engineering, marines, power plants, aeronautical, 
chemical such as nuclear. Non homogeneity in 
orthotropic rectangular plate in visco elastic material 
plays an important role in gas turbines, space craft and 
engineering field. In orthotropic material a lot of work 
is done by using the different variation in plates. But a 
less work has done in orthotropic plate with effect of 
circular variation which includes the linear density. In 
the present day all the machine variation have the 
common design. We need such type of structure which 
is better in designing and also easy to analyzing. To get 
the better strength and durability, we need to develop 
the design with low expense and low in weight. In the 
field of space and technology large machine are design 
in such a way that it can avoid the harmful vibration 
which saves us from earthquake, electronic 
components and smokestacks. In orthotropic 
rectangular plate needs a controlling vibration effect 

which is due to the effect of temperature and density 
helps in building construction, paper industry and 
space shuttles. Thus we have to maintain the vibration 
of the plate and it should be free from unwanted and 
harmful elements which cause the fatigues. 
Many researchers studied different type of plates such 
as elliptical, rectangular and circular with different 
thickness and temperature. Plates with different type of 
thickness variation and boundary condition are 
analyzed [1]. Reference is made to a viscoelastic 
rectangular plate with thickness that follows a 
parabolic distribution. While significant research 
exists on the elastic and inelastic behavior of materials, 
limited studies have focused on viscoelastic bodies 
with varying bearing thickness. This study examines 
how the taper constant influences the free vibration of 
a clamped viscoelastic rectangular plate featuring 
featuring a parabolic variation in thickness [2]. The 
effect of thermal gradient on vibration of clamped 
boundary condition with thickness variation varies 
linear and parabolic analyzed [3]. This research was 
conducted to minimize the natural frequencies of the 
plate and examine how changes in plate parameters 
impact these values. To support the study’s objective, 
numerical examples are provided along with a 
comparative evaluation against existing results. Two 
dimensional circular thicknesses are obtained by using 
Ritz method in a rectangular plate [4]. An analysis of 
the forced vibration of a non-homogeneous rectangular 
plate with thickness that changes linearly is carried out 
using classical plate theory. The material is regarded 
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as non-homogeneous due to a linear change in its 
density. To evaluate the structural response, 
approximate deflection of the plate under a uniformly 
distributed harmonic lateral load [5]. This study 
analyzed the non homogeneity of visco elastic material 
varying thickness with thermal effect [6]. The 
transverse vibration behavior of a rectangular plate 
with thickness variation is investigated under multiple 
boundary condition scenarios at its edges. The model 
captures thickness changes in two directions as the 
Cartesian product of linear variations along two 
adjacent sides, employing the Rayleigh-Ritz method 
with suitable trail functions and iterative successive 
approximations.. A comprehensive numerical analysis 
is conducted to calculate the first three natural 
frequencies [7]. The vibration of exponential variation 
in non homogeneity discussed with a rectangular plate 
[8]. Behavior of the vibration of clamped rectangular 
plate with linear thickness in both directions has been 
studied [9]. The study calculates the vibration 
properties of an orthotropic rectangular plate featuring 
thickness variation and subjected to temperature 
changes. The influence of thermal stresses and material 
anisotropy on the natural frequencies and mode shapes 
has been analyzed  [10]. Using thin plate theory and 
two-dimensional viscoelastic constitutive equations, 
the governing differential equation is formulated for a 
viscoelastic plate with linear thickness variation and 
multiple through-cracks. Expression for the additional 
rotational angles caused by the cracks is also derived. 
The material is assumed to exhibit elastic behavior 
under dilation, while its distortion follows the Kelvin-
Voigt model [11]. A double trigonometric series is 
used to derive an analytical expression for the 
characteristic equation of a clamped orthotropic 
rectangular plate with thickness variation in a single 
direction parallel to its sides. Utilizing the fundamental 
natural frequency obtained from this equation, a 
numerical formula is proposed to estimate the 
fundamental frequency of the clamped orthotropic 
plate [12].  An analytical approach based on 
superposition yields an accurate solution for the free 
vibration of a fully free orthotropic rectangular plate. 
For a particular case representing reinforced and 
composite like materials, eigen values for 12 vibration 
modes are provided across a wide spectrum of plate 
aspect ratios. Although it is not possible to present 
results for all potential scenarios, the data includes a 
broad and representative selection of cases [13]. This 
study gave an analysis to the vibrational of a visco-
elastic parallelogram plate featuring a parabolic 
thickness profile [14]. Vibration analysis of a non-
uniform, orthotropic rectangular plate with variable 
thickness is performed using the Rayleigh-Ritz method 
within the framework of classical plate theory. The 
approach involves applying two-dimensional 

orthogonal polynomials for boundary characteristics, 
produced through the Gram-Schmidt technique. The 
plate undergoes uniformly distributed in plane loading 
on opposite edges, featuring a clamped boundary on 
one side and a simply supported boundary on the other. 
The material non-homogeneity is attributed to a linear 
variation in both the elastic properties and density 
within the plane coordinates [15]. An analysis is 
performed on the transverse vibrations of an 
orthotropic, non-homogeneous viscoelastic circular 
plate featuring a radially parabolic bead thickness 
distribution. The non-homogeneity is modeled by 
assuming a linear variation in material density with 
respect to the radius. Using two-term deflection 
function is formulated through the Rayleigh-Ritz 
method [16]. Non-homogeneity along two adjoining 
edges is considered in the study of free vibration 
behavior in a thin rectangular plate. Linear variation is 
applied to both the modulus of elasticity and the 
density of the plate. Finite difference method has been 
applied [17]. To analyze the natural vibration behavior 
of clamped orthotropic rectangular plates, the extended 
Kantorovich method is applied. The employed dual 
iterative procedure converges quickly to accurate 
results. In the absence of exact analytical solutions for 
such plates, the obtained results show strong 
agreement with available data. The derived closed 
form expressions for natural modes and their 
corresponding frequencies are well suited for 
engineering analysis and practical applications [18]. 
With deep analysis to the orthotropic rectangular plate 
with two dimensional temperature and thickness 
variation has been analyzed [19]. The exact solution 
for free vibration of thin orthotropic rectangular plates 
studied [20]. Effect of the non-homogeneous 
rectangular plate with parabolically thickness in both 
direction and exponentially temperature distribution 
has been analyzed [21]. Researchers previously 
mentioned analyzed the vibration of orthotropic 
rectangular plates considering specific values for 
thickness and temperature. However, some work is 
done with linear temperature in both x and y 
dimensions, respectively and circular thickness in x-
direction. Our current work’s primary goal is to 
investigate the linearly varying temperature influence 
on the x-direction vibrations of an orthotropic 
rectangular plate with circular thickness subjected to 
clamped boundary conditions along all edges are 
examined. 
By leveraging a deflection function within the 
Rayleigh-Ritz framework; the motion equation is 
resolved, leading to the calculation of frequency 
parameters for the first two vibration modes. Density 
varies linear with circular thickness in one dimension 
and temperature in both directions. Thermal gradient is 
denoted by (A) and taper parameter with (B). Also non 
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homogeneity is denoted by (𝐦𝟏). Graphical and 
tabular data present the impact of non-homogeneity, 
aspect ratio, temperature gradient and the taper 
constant.  
 

The differential equation of motion of  visco-elastic 
orthotropic rectangular plate may be written as  

பమ୑౮

ப୶మ  + 2
பమ୑౮౯

ப୶ ப୷
 + 

பమ୑౯

ப୷మ  = ρh
பమ୛

ப୲మ  .                       (1)                                                                                

Here M୶, M୷ and  M୶୷ represent the bending moments 
and the twisting moment per unit length acting on the 
plate in the x-direction and y-direction, respectively. ρ 
be the material’s mass density, h is the plate’s 
thickness, and w indicates its displacement as a 
function of time t. The terms M୶, M୷ and M୶୷ are 
given as: 

                          M୶ = - Ď Dଵ[ 
பమ୛

ப୶మ  +v 
பమ୛

ப୷మ  ] 

                        M୷ = - Ď Dଵ[ 
பమ୛

ப୷మ  +v 
பమ୛

ப୶మ  ] 

                        M୷୶= Ď Dଵ (1-v) 
பమ୛

ப୷ ப୶
 .              (2)     

where D̃ is the representation for visco-elastic operator.  

D୶ =
୉౮୪య

ଵଶ൫ଵି୴౮୴౯൯
  , D୷ =

୉౯୪య

ଵଶ൫ଵି୴౮୴౯൯
  , 

D୶୷ =
ୋ౮౯୪య

ଵଶ൫ଵି୴౮୴౯൯
  .                                            (3) 

Dଵ = v୶D୷(= v୶D୶) , the symbol D represents the 
Rhelogical operator, 

Deflection  w can be considered the product of two 
functions using the variable separation method    
w(x,y,t)= W(x,y) T(t).                                         (4) 

2. ASSUMPTION REQUIRED 
assuming that the plate’s thickness l, varies in a 
circular fashion in one dimension, i.e., 

               l = l଴ ቈ1 + B ቆ1 − ට1 −
୶మ

ୟమቇ቉.                (5) 

Where B is a taper constant. We assume a one-
dimensional linear fluctuation in density for non-
homogeneity consideration, as 

               ρ = ρ଴ ቀ1 + mଵ
୶

ୟ
ቁ.                                 (6)                  

Where the non- homogeneity constants is denoted by   
mଵ , 0 ≤ mଵ < 1. 

Consider a plate subjected to a continuous two-
dimensional linear temperature distribution  

                 τ = τ଴ ቀ1 −
୶

ୟ
ቁ ቀ1 −

୷

ୠ
ቁ.                       (7) 

Eଵ  and Eଶ denote the Young’s moduli along the x-and 
y-axes, respectively, evaluated at the reference 
temperature  τ = 0. The coefficient α characterizes the 
rate of change of the elastic modulus with respect to 𝜏, 
this change in modulus can be expressed as:  

E୶(τ) = Eଵ  ቂ1 − A ቀ1 −
୶

ୟ
ቁ ቀ1 −

୷

ୠ
ቁቃ, 

E୷(τ) = Eଶ  ቂ1 − A ቀ1 −
୶

ୟ
ቁ ቀ1 −

୷

ୠ
ቁቃ, 

G୶୷(τ) = G଴  ቂ1 − A ቀ1 −
୶

ୟ
ቁ ቀ1 −

୷

ୠ
ቁቃ.              (8)         

Where the temperature gradient parameter is denoted 
by  A =  α τ଴  (0 ≤ A < 1). 

3. CLAMPED BOUNDARY CONDITION 

The clamped boundary conditions are W = 0 and  
ப୛

ப୶
  

= 0, at x= 0, a;   
ப୛

ப୷
= 0 at y = 0, a.     

A two-term deflection function is assumed to satisfy 
the expression as:  

W(x, y) = ቈ൬ቀ
୶

ୟ
ቁ ቀ

୷

ୠ
ቁ ቀ1 −

୶

ୟ
ቁ ቀ1 −

୷

ୠ
ቁ൰

ଶ

቉ ∗ ቂAଵ +

Aଶ ቀ
୶

ୟ
ቁ ቀ

୷

ୠ
ቁ ቀ1 −

୶

ୟ
ቁ ቀ1 −

୷

ୠ
ቁቃ.                 (9) 

where Aଵ and Aଶ are arbitrary constants. 

 

4. RAYLEIGH RITZ METHOD WITH 
RECTANGULAR PLATE 
The Rayleigh Ritz method aims to ensure that the 
system’s maximum potential (strain) energy is equals 
to its maximum kinetic energy, which can be succinctly 
stated as: 

                          δ(S − K) = 0.                               (10)                  
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The strain energy and kinetic energy for plate vibration 
are expressed as: 

S =

ଵ

ଶ
∫  

ୟ

଴
 ∫  

ୠ

଴
൦
 D୶ ቀ

பమ୛

ப୶మ ቁ
ଶ

+  D୷ ቀ
பమ୛

ப୷మ ቁ
ଶ

+ 2Dଵ ∗

ቀ
பమ୛

ப୶మ ቁ ቀ
பమ୛

ப୷మ ቁ + 4 D୶୷ ቀ
பమ୛

ப୶ ப୷
ቁ

ଶ ൪ dxdy.              

                                                                           (11) 

And      K =
ଵ

ଶ
 Pଶρ ∫  

ୟ

଴
 ∫  

ୠ

଴
 l Wଶ dxdy.                (12) 

The non-dimensional variables are introduce here to 
make our assumption simple and satisfied. 

X=  
୶

ୟ
,        Y=  

୷

ୟ
,  

 Eଵ
∗  = 

୉భ  

൫ଵି୴౮୴౯൯
 ,  Eଶ

∗  = 
୉మ  

൫ଵି୴౮୴౯൯
   and 

 E∗= v୶Eଶ
∗= v୷Eଵ

∗.                                               (13) 

5. SOLUTION OF FREQUENCY EQUATION 
By using equation (13), along with (10), (11) and (12), 
we get 

 δ(S − K) =
୕

ଶ
  ∫  

ୟ

଴
∫  

ୠ

଴
ቂ1 − A ቀ1 −

୶

ୟ
ቁ ቀ1 −

୷

ୠ
ቁቃ ቈ1 +

B ቆ1 − ට1 −
୶మ

ୟమቇ቉

ଷ

൤ቀ
பమ୛

ப୶మ ቁ
ଶ

+
୉మ

∗

୉భ
∗ ቀ

பమ୛

ப୷మ ቁ
ଶ

+

2v୶
୉మ

∗

୉భ
∗

பమ୛

ப୶మ

பమ୛

ப୷మ + 4
ୋబ

୉భ
∗ ൫1 − v୶v୷൯ ቀ

பమ୛

ப୶ ப୷
ቁ

ଶ

൨ dxdy −

dଶ ∫  
ୟ

଴
 ∫

଴

ୠ
ቀ1 + mଵ

୶

ୟ
ቁ ቈ1 + B ቆ1 −

ට1 −
୶మ

ୟమቇ቉ Wଶdxdy = 0.                         (14) 

                                                                                                    
The limits are now set as X varying between 0 to 1, and 

Y between 0 and 
ୠ

ୟ
, respectively. By replacing the 

values of S & K in equation  (14)   with the help of 
equation (10), we obtain 

                             (Sଵ
∗ − dଶKଵ

∗) = 0.              (15)       

Thus we have value for Sଵ
∗ and Kଵ

∗  define as: 

Sଵ
∗ =  

Q

2
න  

ଵ

଴

න  

ୠ
ୟ

଴

  ൤1 − A(1 − X) ൬1 −
Y a

b
൰൨

∗  ቂ1 + B ቀ1 − ඥ1 − Xଶቁቃ
ଷ

∗ ൥ቆ
∂ଶW

∂xଶ
ቇ

ଶ

+
Eଶ

∗

Eଵ
∗ ቆ

∂ଶW

∂yଶ
ቇ

ଶ

+ 2v୶

Eଶ
∗

Eଵ
∗

∂ଶW

∂xଶ

∂ଶW

∂yଶ

+ 4
G଴

Eଵ
∗ ൫1

− v୶v୷൯ ቆ
∂ଶW

∂x ∂y
ቇ

ଶ

൩ dXdY. (16)  

And  

Kଵ
∗ = ∫

଴

ଵ
 ∫

଴

ୠ/ୟ
(1 + mଵX) ቂ1

+ B ቀ1 − ඥ1 − Xଶቁቃ WଶdXdY. 

                                                                         (17) 

Where  

Q =  
ଵ

ଶ

୉భ  ୪బ
య

ଵଶ൫ଵି୴౮୴౯൯
   and   dଶ =

ଵଶ ୔మୟర஡൫ଵି୴౮୴౯൯

୉భ୪బ
మ  . 

The unknown Aଵ & Aଶ in equation (15) result from the 
substitutions of W from equation (9). The following 
formula must be used to determine these two constants: 

ப

ப୅౤
[Sଵ

∗ − dଶKଵ
∗] = 0,  n=1, 2.                          (18)                

Equation (18) can be simplified to provide the 
following form   

C୯ଵ Aଵ + C୯ଶ Aଶ = 0.                                      (19)               

The parametric constants and the frequency parameter 
are involved in C୯ଵ & C୯ଶ where q=1, 2. When the 
coefficients of equation (19) are determined to be non-
zero, they must disappear. In this manner, the 
frequency equation was 

                            ቚ
cଵଵ cଵଶ

cଶଵ cଶଶ
ቚ = 0.                     (20) 

By solving equation (20), one obtains a quadratic 
equation in dଶ, yielding two roots. When  Aଵ = 1 is 
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chosen to be substituted in equation (9), Aଶ = −
ୡభభ

ୡభమ
   is 

obtained, and W becomes 

 W(x, y) = ቈ൬ቀ
୶

ୟ
ቁ ቀ

୷

ୠ
ቁ ቀ1 −

୶

ୟ
ቁ ቀ1 −

୷

ୠ
ቁ൰

ଶ

቉ ∗ ቂ1 +

ቀ−
ୡభభ

ୡభమ
ቁ ቀ

୶

ୟ
ቁ ቀ

୷

ୠ
ቁ ቀ1 −

୶

ୟ
ቁ ቀ1 −

୷

ୠ
ቁቃ. (21)                                        

Furthermore, it can be written as: 

W(x, y) = ቈ൬XY
ୟ

ୠ
(1 − X) ቀ1 −

ୟ

ୠ
Yቁ൰

ଶ

቉ ∗ ቂ1 +

ቀ−
ୡభభ

ୡభమ
ቁ XY

ୟ

ୠ
(1 − X) ቀ1 −

ୟ

ୠ
Yቁቃ.  

 
6. RESULT AND DISCUSSION 
Duralumin’ is a mixture of copper, magnesium, 
manganese and aluminium that we have used. To 
calculate the material properties, we use the thermal 
gradient (A), taper constant (B), non- homogeneity 
(mଵ) and the aspect ratio (a/b) at different positions for 
the first two vibration modes, (dଵand dଶ). 

 Our computation makes use of the following material 
parameters:  

 
୉మ

∗

୉భ
∗  = 0.32,   

 
 ୉∗

୉భ
∗  = 0.04, 

 
ୋబ

୉భ
∗  = 0.09, E= 7.08× 10^10,  

ρ଴ = 2.80× 10^3, G଴ = 2.632× 10^10, v = 0.345, a=3, 
5 and b=2.  

We have considered the orthotropic rectangular plate 
having circular variation in x-direction with thermal 
effect in which temperature is linear in both direction 
and density varies linear. Frequency values for the first 
two modes are computed using the Matlab software 
tool and the Rayleigh Ritz method. The results are 
presented and analyzed in the tables below.  The 
length-to-breadth ratio of the plate is 1.5 and 2.5, 
respectively. 
Table1, 2 and 3 illustrate the frequency for the initial 
two modes of thermal gradient (A), non homogeneity 
(mଵ), and taper constant (B), respectively.  

 In Table1 for thermal gradient (A) we take 
values (B=mଵ=0.2, v=0.345, B=mଵ=0.4, 
v=0.345, B=mଵ=0.8, v=0.345). 

 In Table2 for non homogeneity (mଵ) we take 
values (A=B=0.2, v=0.345, A=B=0.4, v=0.345, 
A=B=0.8, v=0.345). 

 In Table3 for taper parameter (B) we take values 
(A=mଵ=0.2, v=0.345, A=mଵ=0.4, v=0.345, 
A=mଵ=0.8, v=0.345). 

 In Table1 and Table2, both thermal gradient (A) 
and non homogeneity parameter ( mଵ), increases 
horizontally to the right at various points ranging 
from 0.2 to 0.8. 

 
 Table3 now shows a thermal gradient (A) with non 

homogeneity (m1) for the values (A=mଵ=0.2, 
A=mଵ=0.4 and A=mଵ=0.8), as well as a taper 
parameter (B) ranging from 0.0 to 1.0.  

 Tapering parameter (B) increases, so do the 
frequency mode values dଵ and dଶ .It is evident that 
when the frequency mode dଵ and dଶ, listed in 
Table3, increase as taper parameter (B) is varied 
from 0.0 to 1.0, whereas in Table1 and Table2, the 
frequency mode values  dଵ and dଶ  decrease as 
thermal gradient and non-homogeneity rise within 
the range of 0.0 to 1.0.  

 In Table3 taper parameter (B) has the highest 
values of frequency dଵand dଶ at A=mଵ=0.2, at 
B =1.0. 

 While in Table1 and Table2 has the highest values 
of frequency dଵ and dଶ  in thermal gradient and 
non homogeneity respectively are B=m1=0.8, at 
A=0.0 and A=B=0.8, at mଵ=0.0. 

Table4, 5 and 6 illustrate the frequency for the initial 
two modes for an aspect ratio of 2.5 relate to thermal 
gradient (A), non homogeneity (mଵ) and taper constant 
(B), respectively.  

 In Table4 for thermal gradient (A) we take values 
(B=mଵ=0.2, v=0.345, B=mଵ=0.4, v=0.345,   
B=mଵ=0.8, v=0.345). 

 In Table5 for non homogeneity (mଵ) we take 
values (A=B=0.2, v=0.345, A=B=0.4, v=0.345, 
A=B=0.8, v=0.345). 

 In Table6 for taper parameter (B) we take values 
(A=mଵ=0.2, v=0.345, A=mଵ=0.4, v=0.345, 
A=mଵ=0.8, v=0.345). 

 From Table4 thermal gradient (A), frequency 
mode values dଵ and dଶ, decreases when we 
increase it from (0.0 to 0.8) at different stage 
(B=mଵ=0.2,v=0.345, B=mଵ=0.4,v=0.345,  
B=mଵ=0.8, v=0.345). But values also horizontally 
decreased when we gradually increase the taper 
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constant (B) and non homogeneity (mଵ)  from 0.2 
to 0.8. 

 From Table5 non homogeneity (mଵ), frequency 
mode values dଵ and dଶ, decreases vertically when 
we increase it from (0.0 to 1.0) at different stage 
(A=B=0.2, v=0.345, A=B=0.4, v=0.345, 
A=B=0.8, v=0.345). As thermal gradient (A) and 
taper constant (B) increase from 0.2 to 0.8, values 
show a horizontal increase. 

 From Table6 taper constant (B), frequency mode 
values dଵ and dଶ, increases vertically when we 
increase it from (0.0 to 1.0) at different stage (A=

mଵ=0.2, v=0.345, A= mଵ=0.4, v=0.345, A=

mଵ=0.8, v=0.345). The mode values decrease 

along the horizontal direction as thermal gradient 
(A) and non homogeneity (mଵ) increase  between 
0.2 to 0.8. 

 All the three Tables 4, 5 and 6 shows the different 
behaviour for their mode values dଵ and dଶ. Table4 
mode values dଵ and dଶ decrease in both sides at 
different stages. Table5 mode values dଵ and dଶ 
decreases in vertically side and increases in 
horizontally side at different stages. Table6 mode 
values dଵ and dଶ increases in vertically side and 
decreases in horizontally at different stages. 

 
 
 

 

Table-1. Thermal gradient (A) vs Frequency (d) of clamped rectangular plate for Aspect Ratio 1.5 

  A B=m1=0.2,v=0.345 B=𝐦𝟏=0.4, v=0.345 B= m1=0.8,v=0.345 
d1 d2 d1 d2 d1 d2 

0.0 46.2992 185.7404 46.4354 186.1372 47.2641 189.6615 
0.2 45.1911 181.3104 45.3846 181.9717 46.3010 185.9494 
0.4 44.0551 176.7695 44.3085 177.7087 45.3159 182.1620 
0.6 42.8888 172.1088 43.2051 173.3410 44.3072 178.2946 
0.8 41.6897 167.3184 42.0721 168.8606 43.2729 174.3419 

 

Graph-1. Constant aspect ratio of 1.5, Thermal gradient (A) versus Frequency (d) 

 

Table-2. Non-homogeneity (m1) vs Frequency (d) of clamped rectangular plate for Aspect Ratio 1.5 

 m1 A=B=0.2, v=0.345 A=B=0.4, v=0.345 A=B=0.8, v=0.345 
 d1 d2 d1 d2 d1 d2 

0.0 47.4079 190.2620 48.5773 195.0416 51.3319 207.559 
0.2 45.1911 181.3104 46.2959 185.7713 48.9031 197.5105 
0.4 43.2588 173.5141 44.3085 177.7087 46.7895 188.7928 
0.6 41.5550 166.6440 42.5570 170.6123 44.9283 181.1364 
0.8 40.0388 160.5303 40.9980 164.3034 43.2729 174.3419 
1.0 38.6756 155.0437 39.5987 158.6464 41.7881 168.2590 
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Graph-2. Constant aspect ratio of 1.5, Non-homogeneity constant (mଵ) versus Frequency (d) 

 

Table-3. Taper constant (B) vs Frequency (d) of clamped rectangular plate for Aspect Ratio 1.5 

B A=m1=0.2, v=0.345 A=m1=0.4, v=0.345 A=m1=0.8, v=0.345 
 d1 d2 d1 d2 d1 d2 

0.0 43.1471 173.3386 40.2084 161.5327 35.0968 140.9973 
0.2 45.1911 181.3104 42.1714 169.1683 36.9358 148.1418 
0.4 47.4203 190.2276 44.3085 177.7087 38.9289 156.1225 
0.6 49.8073 200.0321 46.5928 187.0947 41.0492 164.8782 
0.8 52.3263 210.6572 48.9990 197.2598 43.2729 174.3419 
1.0 54.9545 222.0329 51.5054 208.1345 45.5805 184.4455 

 

Graph-3. Constant aspect ratio of 1.5, Tapering constant (B) versus Frequency (d) 

 

Table-4. Thermal gradient (A) vs Frequency (d) of clamped rectangular plate for Aspect Ratio 2.5 

  A B=m1=0.2,v=0.345 B=𝐦𝟏=0.4, v=0.345 B= m1=0.8,v=0.345 
d1 d2 d1 d2 d1 d2 

0.0 36.5347 147.6456 36.1889 145.7340 35.8758 143.4432 
0.2 35.6333 143.9953 35.3190 142.2184 35.0569 140.1534 
0.4 34.7085 140.2500 34.4272 138.6137 34.2183 136.7845 
0.6 33.7583 136.4019 33.5115 134.9127 33.3584 133.3306 
0.8 32.7806 132.4420 32.5701 131.1073 32.4755 129.7848 
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Graph-4. Constant aspect ratio of 2.5, Thermal gradient (A) versus Frequency (d) 

 

Table-5. Non-homogeneity (m1) vs Frequency (d) of clamped rectangular plate for Aspect Ratio 2.5 

 m1 A=B=0.2, v=0.345 A=B=0.4, v=0.345 A=B=0.8, v=0.345 
 d1 d2 d1 d2 d1 d2 

0.0 37.3812 151.1045 37.7439 152.1320 38.5252 154.4989 
0.2 35.6333 143.9953 35.9713 144.9019 36.7018 147.0229 
0.4 34.1098 137.8035 34.4272 138.6137 35.1151 140.5370 
0.6 32.7664 132.3474 33.0663 133.0789 33.7180 134.8404 
0.8 31.5701 127.4920 31.8551 128.1584 32.4755 129.7848 
1.0 30.4961 123.1345 30.7680 123.7462 31.3611 125.2585 

 

Graph-5. Constant aspect ratio of 2.5, Non homogeneity constant (mଵ) versus Frequency (d) 

 

Table-6. Taper constant (B) vs Frequency (d) of clamped rectangular plate for Aspect Ratio 2.5 

B A=m1=0.2, v=0.345 A=m1=0.4, v=0.345 A=m1=0.8, v=0.345 
 d1 d2 d1 d2 d1 d2 

0.0 34.4286 139.5874 32.0837 130.0803 28.0050 113.5434 
0.2 35.6333 143.9953 33.2245 134.2192 29.0429 117.2628 
0.4 36.9032 148.6702 34.4272 138.6137 30.1369 121.2181 
0.6 38.2336 153.5990 35.6872 143.2506 31.2826 125.3966 
0.8 39.6198 158.7678 36.9998 148.1163 32.4755 129.7848 
1.0 41.0569 164.1620 38.3604 153.1964 33.7111 134.3691 
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Graph-6. Constant aspect ratio of 2.5, Tapering constant (B) versus Frequency (d) 

 

 

CONCLUSION 
This study presents the results of an investigation into 
the frequency distribution of orthotropic rectangular 
plates subjected to linear temperature changes and 
circular fluctuations in density and thickness. The rise 
in thermal (A), as shown in Table1, from 0.0 to 0.8, it 
increases horizontally and decrease vertically for 
different values of Taper constant (B) and non 
homogeneity (m1) at   B=m1=0.2, B=m1=0.4, 
B=m1=0.8. However, Table2 and Table5 show a same 
behaviour for increase and decrease in frequency for 
temperature gradient (A) and non-homogeneity (mଵ). 
Table3 and Table6 also behave in a similar manner for 
taper constant (B) from 0.0 to 1.0 at different values of 
A=m1=0.2, A=m1=0.4 and A=m1=0.8. Table4 decrease 
vertically and horizontally for different mode values at 
B=m1=0.2, B=m1=0.4 and B=m1=0.8, where thermal 
gradient (A) varies from 0.0 to 0.8. The frequency 
changes in modes dଵ and dଶ, weather increasing or 
decreasing, happen very slowly due to the way the 
circular variation is implemented. Temperature 
variations, non-homogeneity and tapering significantly 
influence the vibration behaviour of plates. All 
mechanical and engineering structure can’t be 
imagining without the role of these elements. Our 
research utilizes a machine framework to examine the 
impact of temperature material, non-homogeneity and 
tapering. A mathematical model with linear 

temperature and circular thickness can use in marine 
engineering, optical elements and latest applications. 
We need a design structure which can balanced the 
natural frequency and make a suitable mode variation, 
so our plate material becomes less weight and reduce 
the unwanted vibration. Hence in a good mechanical 
structure you need to know the effect of temperature, 
homogeneity and tapering in a plate material, and our 
study will helps that process. 
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