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Abstract-We have examined the stability of equilibrium points in the photo;ravitational R3BP when

primaries are triaxial rigid bodies and one an oblate spheroid. We have foun
triangular equilibrium points of our problem. With the hel

equations of motion and
of characteristic equation, we have

discussed stability conditions. We conclude that triangular equilibrium points remain unstable, different

from classical case.
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1. INTRODUCTION

The restricted three-body problem (R3BP) is a
generalization of the classical restricted three-body
problem (R3BP). The restricted three body problem

describes the motion of an infinitesimal mass 1,
moving under the gravitational effect of the two

massive primaries of masses m;&m, such tha

m, < m,. These primaries are assumed move in

circular orbits around their centre of mass on account
of their mutual attraction and the infinitesimal mass not
influencing the motion of the primaries. It is well
known that when two bodies orbit about each other, a
mass less particle can rest in a rotating co-ordinate
frame at five particular points, two triangular and three
collinear. Triangular equilibrium points are linearly
stable, provided the mass ratio of the primaries is small
enough. Wintner (1941) showed that the stability of the
two equilateral points is due to the existence of coriolis
terms in the equations of motion written in a synodic
co-ordinate system. In recent times many perturbing
forces, that is, oblateness and radiation forces of the
primaries, coriolis and centrifugal forces, variation of
the masses of the primaries included in the study of the
restricted three body problem Szebehely (1967 b)
considered the effect of small perturbation of the
coriolis force keeping the centrifugal force constant.
Subba Rao and Sharma (1975) considered the problem
with one of the primaries as an oblate spheroid and its
equatorial plane coinciding with the plane of motion.
Bhatnagar and Hallan (1978) studied the effect of
perturbation in the centrifugal and coriolis forces.
Bhatnagar and Hallan (1979) studied the effect of
perturbed potentials on the linear stability of libration
points in the restricted three body problem. Bhatnagar
and Gupta (1986) studied the existence and stability of

the equilibrium points of a triaxial rigid body moving
around another triaxial rigid body. Khanna and
Bhatnagar (1998) studied the linear stability of Ls in
the restricted three body problem when the smaller
primary is a triaxial rigid body.In this paper,we have
studied the stability of equilibrium points in the
photogravitational restricted three body problem when
primaries are triaxial rigid bodies with one of its axes
as axis of symmetry and its equatorial plane conciding
with the plane of motion.The bigger primary is taken
as an oblate spheroid whose equatorial plane also
concides with the plane of motion .Further,we assume
that the primaries are moving without rotation in
circular orbits around their center of mass.

Equation of Motion: - Let m andm, be
the masses of the bigger and smaller primaries.
The distance between the primaries does not
change and is taken as unity, the sum of the
masses of the primaries is also taken as unity. The
unit of time is so chosen as to make the
gravitational constant unity. Using dimensionless
variables, the equations of motion of infinitesimal
mass m, in a synodic co-ordinate system (X, y)

are
i-2mp=0Q, (D)
j+2ni=Q, ()
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a;,b.,c, (i = 1,2) as the length of its semi-axis, R
is the distance between the primaries and the mean
motion given in the equation.
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The triangular equilibrium points (y # 0)

Q =0 ... (5)
Q =0 ...(6)
rt=e—u)l +y: o =(e—ut1) +y?
. (7
X =M X, =u-1
m, I . .
H= <—with m, >m,being the
m, +m,

masses of the primaries.
If we take 0, =0, =0 (i=1, 2) and A;=0 the
solution of the equation (5) and (6) is given by
r; =r, =1 and from the equation (4),n =1.
Now, we suppose that the solution for the equation
(5) and (6) when A4,,0,,0, (i = 1,2) are not
equal to zero be

n=l+a,r,=1+p ....(8)
where «, f <<1. Putting the value of r; and
from the equation (8) in equation (7), we get
Rejecting the higher order terms, we get

x:,u—%+(ﬂ—a) . (9)

y= ig{ug(oﬁﬂ)} o (10)

Putting the values of ri, r» from the equation (6)
and x, y from the equation (9) & (10) in the
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equation (5) and (6), rejecting higher order terms,
we get o and S
Putting the values of a and B in equation (9) &

(10), we get the co-ordinates (x, y) of the
equilibrium points as

1 1 1
x:ﬂ_§+8_(4_:u)0-11 __(4"'3/1)0-21
H 8u

1 1
8(1-u) B+ o + 8(1- u)

e (11)
3

Y= 5

{1 +g{+ L(4_23y)o-“ +L(—4+19,u)<721
3| 8u 8u

S (—19+23,u)0'12+8(1_lu)

e (12)

Stability of equilibrium points
Let the co-ordinate of the triangular points L4,5 be
denoted by (xo,yo). u,v

displacement of the third body from L4.By
Taylor’s theorem, we have

denote  small

At the equilibrium points (xo R yo) we have
Q’=0 and Q) =0

_ 0 0 _ 0 0
Q =uQ) +vQ , Q =uQ +vQ, ,
superscript denote value of derivative at L4
Putting the value in equation (1) and (2), we have

i —2nv = uQ’_ + ngy .. (13)
. 0 0
V+2nu =ul) +vQ ... (14)
Let, u = Ae™, v = Be" be the trial solution of

equation (13) and (14).
These will have a non-trivial solution
2@+ —4n? )P+ - ) =0
....(15)

(1) 0 S ﬂéﬂcrit
Putting in equation (16) and replacing i by A'in
the equation (15)

AN +AA+B=0

(16)

1
(7 - 3/1)0'22 - EAI

1
(15-194)o, T 4, H
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where

A=1+30,, +%(—3+2,u)0'21 +30, —%(1+2,u)
B="lull-) 4= (1= @10+ 89400,
+%(1—y)(10—37u)0'21

+ % u(79-89u)o,, + % u(=27+37u)o,,

+3L2(—153+10638,u—14580,uz)A1 - (17)
Consequently, the roots
A=Hal, L =-al

A=+ /\?, A, = —/\? depend in a simple

manner, on the value of the mass parameter
U, 04,0, (i = 1,2) and A Now  the
discriminant of the equation (16) is zero if
A*—4B=0.
1-27u(1— 1)

This shows that the equilibrium point is

stablEG — 4y) 450

2T\Iow we introduce the variable f 77by the

transformation
E=¢cosa—nmsina
n=<&sina+ncosa

This is equivalent to the rotation of the co-ordinate
system by « . We choose & in such a way that the

term containing E,; in Q=0
The new quadratic form becomes
Q=1 +mn® +n

(21)
tan2a—N
32@{#-;7 B~ 4u+8y)a, Jﬁ (—8+9/1—37#2 o5 +

W)( -50+13 #—89%5%4*)(36 —Sp4+374 o, — (7 10/‘94}

——[—38+297u 267, - [42 149 +1114 ]bg{ 4*(8+5y—15;f)0;1—|—(—8 3y+23;f)o§14ﬁ( 242500,

+2 - 237u 2670 s 2 [4+73u 'l +3—(d£43ﬂ9§z9;?>“%”3‘ﬁ§0é‘w4¢f?}

.. (18)

If 4,,0,,0, (z' = 1,2) are equal to zero, then
M=, is a root of the equation (18) where
Hy =0.0385208965... (Szebehely 1967). When
A4,,0,,0, (i = 1,2) are not equal to zero,

We suppose,

Mg = Mo + X0 +X,0, + X307, + X,05 + X54,
as the roots of the equation (18).

where x,, x,, x5, x,, X5 are to be determined in

such a manner that 4> —4B=0

Cl
1=27(1y +x,0,, + X,0,, + X,0, + X,0,, + X, 4) (1 = 14—

. (22)

Also, using the Jacobi constant, we have
C=2Q=21E>+2mn* +2n

(23)
Hence, it follows that the above curve is an ellipse
and the direction ¢ of the
major axis is given by the equation(24) .The
length of semi-major and semi-minor axis are
given by

Lc 2nJ2 ind
i 2ho

—_

1

C-2n)?
avm = -
: 2m

' " p.f24
—X,0,, = X,05, —Xs4)+ Bo,, + P,o, + Ko, + P,0, "'}93“5‘1—_lL —

But 4 >0, therefore A1 and A, are negative.

Therefore in this case, the four roots of the
characteristic equation are written as

Ay =Hi(= A, ) = His,
A= ii(_ /\2)% = tis,
.. (20)

and

where [/, m, n are given by the equation (21) and

C depends upon the

initial conditions.

(i) 4o £ pL0.5

This discriminant of the characteristic equation is

negative.
~A++D
2

Also AL2 =
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where A is given by the equation (20) and
D=4 -4B, A,, :%[—Aiié]

1

where 048 = D? and is given by

1

01=0, =0,

=0,=4,=0 , 5

The results obtained are in agreement with
those of the class1ca1 problem.

§=[27u(l - p)~ 1——(38 297u+267u%)o,, _—(16‘)2Wh4é%/fhelt]rlék1¥€b0dles are not an oblate

——(8 237 u—2671° )0'12——( 4+73u—111u )0'22——8%1%5%)1

(25)
So the roots of the characterlstlc equatlon are

A, = iAlz ANy, = iA22

These roots are equal and are given by

1 1
A2 52 4
Z e
.. (26)

where A and ¢ are given by the equation (17) and

(25).
S ,}A+jﬂf
a=—20 ="y
2,/ Mz +4 2

Therefore, it follows that the real parts of two of
the characteristic roots are positive

and equal and so the equilibrium point in this case
is unstable.

|/7“| = |2'1,2,3,4| =

(111) /,l = ll’lcrit
When 4 = s1,,,, D=0
Consequently,
-4 .14 |4
= . = =L |— ) = = |—
No=s . A=A . A=A g

The double roots give secular term in the solution
of the equations of motion and
so the equilibrium point is unstable.

Conclusion

In this paper, we have studied the linear stability
of equilibrium points in the photogravitational
R3BP when primaries are triaxial rigid bodies and
one an oblate spheroid. It is seen that there are five
equilibrium points, two triangular and three
collinear.

(i) The co-ordinates of the triangular equilibrium
points are the equation (11) and (12).

(ii) The mean motion n’ of the primaries is given
the equation (4)

(iii) When both the bodies are spheroid in shape

spheroid whose equatorial plane ,

tll}FSé?danS /PjZmotlon 1e.

O, =05 =
A, =0,then the co-ordinates of Las
becomes

vty y:___0+(7”
2 2 ’ 2 3
The results obtained are in agreement
with those of Bhatnagar and Hallan
(1979).
(v) The stability of L4 depends upon a value
u=u,, =0.0385208965-—————

(a) For 0< uu,, Lasis stable.

It may be noted that the range of
stability decreases when compared to the
classical case
(b) For g, (u(0.5,Las is unstable and

(¢) For p=p,,,Las is unstable.

1 o'"-0o {\E
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