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1. INTRODUCTION

1.1 Modelling plant growth

In the middle ages, Leonardo da Vinci observed the
seasonal periodicity of growth and some features of
plant forms [1].Theories of phyllotaxis, which can be
defined as “a construction determined by organs, parts
of organs, or primordial of plants” [2] appear already
in the 17" century. D> Arcy Thompson reviewed early
theories [1] and R.V. Jean contemporary theories of
phyllotaxis [2].The best mechanism of pattern
formation in mathematical biology is related to
reaction - diffusion systems and Turing structures [3],
[4], and the discussion below. However, there is no
biological evidence that this mechanism is really
involve in biological pattern formation [2], [5].Some
otherapproaches use the optimization mechanism. For
example, the branching pattern in plants can be
related to maximization of light interception [6]. Plant
topology and design are studied in [7], [8]. Some
other aspects of plant modeling can be found in the
Proceedings of the Workshop on Plant Models [9].
There are several recent experimental works that
establish a relationship between expression of certain
genes and formation of plant organs [10]. If L (t) is
the plant size that depends on time t, then we can
consider the empirical equation.

Where F can be proportional to L (autocatalytic
growth), or be some constant (linear growth, of
F(L) =aL(Lo-L), where a and L, are parameters [11],
[12]. Such kinetic equations have been proposed since
the early 20" century [1], with no significant progress
since then. It is interesting to note that D’Arcy
Thompson discusses autocatalytic growth in relation
to chemical kinetics and plant hormones.
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1.2 Dynamic model

One of the most important features of plants, for
purposes of modelling them, is that proliferating cells
are strongly localized. The growing part of the plant
where cells divide is called the meristem. The primary
or apical meristem is located at the very end of
growing shoots and represents a narrow layer of cells
with a more or less constant width for each particular
plant. The biological mechanism that provides the
localization of the apical meristem is related to the
expression of certain genes [13].

Some parts of the primary meristem can remain in the
internodes. Under certain conditions, determined by
plant hormones, they can lead to the appearance of
buds that can develop into branches. The secondary
meristem, or cambium, is responsible for width-wise
growth of the plant.

If we consider only the apical meristem, then we can
say that cell proliferation and growth determine plant
growth. Outside this narrow layer, cells differentiate;
they cannot divide any more, and they serve to
conduct biological products. Cell division and growth
are controlled by external signals called growth and
mitosis factors. Each of them is a generic name for a
number of biological products. In particular, mitosis
factors tell the cell when it should go from a rest state,
where it can remain an indefinitely long time, to a
division cycle. In some cases, the same molecule can
play both roles. In what follows we will not
distinguish between these two factors and will call
them for brevity GM-factors. They are produced in
meristemic cells and can be transmitted between
neighboring cells.

The relatively simple structure of plants, where the
growing part is strongly localized, suggests very
natural mathematical models describing their growth.
We describe plant growth with free boundary
problems where the motion of the interface
corresponds to the displacement of the apical
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meristem. The speed of the growth,that is of the
interface motion, is determined by diffusion and
convective fluxes of nutrients in the plant and by a
self-accelerating production of plant growth factors in
the meristem [14].

Thus the model suggested in this work is based on the
following biological facts and mathematical
approximations:

a). The growing part of the plant, or apex, contains a
narrow exterior part, the meristem where cells
proliferate providing the plant growth. This layer
has a constant width and consists of an
approximately constant number of cell layers
specific to each plant. Since it is very small
compared to the whole plant, it will be considered
as a mathematical surface. The displacement of
this surface corresponds to the plant growth.

The appearance of new cells implies that old cells
exit this external layer after some time and
become a part of the internal plant tissue. They
differentiate, that is, they change their functions.
They cannot divide any more, and they serve to
conduct nutrients to the meristem.

The proliferation rate is determined by the
concentration of nutrients and of GM-factors in
the meristem. The GM-factors are produced in
the meristem. The rate of their production is self-
accelerationg. They can be transmitted between
neighboring cells [13].

Appearance of new buds is determined by
concentrations of certain plant hormones [11],
[15]. The hormones are produced either in the
growing parts of the plant (in our case in the
meristem, there are no leaves in the model), or in
the root and supplied to the plant above with the
flow of nutrients.

Some more specific details of the model will be
discussed below.

b).

c).

d).

1.3. Results: 1D case, In the next section we study a
one-dimensional model without branching. The
growing plant is represented as an interval with its left
end point fixed at X = 0 and its right end point at
x = L(t). The length L(t) is a function of time.

Nutrients enter through X = 0 and are transported
through the interval by convective and diffusive
fluxes. The speed of growth V' (¢) = L'(t) depends

on the concentration C of nutrients and on the
concentration R (¢) of the GM-factor atx = L(¢).
The production of the GM-factor is described by the
equation

dR

i Cg(R)—cR (1.2)
The typical form of the function g(R) is shown in
Figure 1 though we often use a smooth function, O is

a parameter. Its first derivative increases at some
interval of R. This allows us to describe an auto-
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catalytic production of the GM-factor. The second
term in the right-hand side of this equation describes
consumption or destruction of the factor.

Another essential property of the function & (R) is

related to the value of its derivative at R =0.
Assuming that the dimensionless concentration C
changes between 0 and 1 with C =1lat x =1, we
choose g'(0) slightly greater than O . Therefore, if

the concentration C of nutrients at the growing end
is small, then the GM-factor will not be produced.

Moreover, its concentration will be decreasing. If C
is close to its maximal value, then the right-hand side
in (1.2) becomes positive, and the concentration of the
GM-factor will grow.

The growth rate V' is considered as a given function
of the GM-factor, y = f(R) - For simplicity, we

suppose that it zero for R < R >R, Thus, the rate

of plant growth equals zero for small concentrations
of the GM-factor, and some positive constant for large
concentrations.

In the oscillating mode, periods of growth alternate
with periods of rest. During periods of growth, the
nutrients are consumed and the concentration of the
GM-factor in the meristem is high. During the periods
of rest, the concentration of the GM-factor is low, and
the concentration of nutrients increases. The number
of periods of growth strongly depends on the
parameters. It can vary from one to probably infinity.
After a number of periods of growth a steady state is
reached, and the length L(t) does not change any
more.

The increase in length is approximately the same
during each period of growth. The final plant length is
determined by the number of growth periods. The
periods of rest increase with time since a larger plant
needs more time to transfer nutrients from the root to
the meristem. Oscillations in plant growth can be
related to endogenous rhythms, i.e., the rhythms that
occur under constant external conditions.

We briefly explain the mechanism of the oscillations.
It can be verified that there exist two continuous
families of stationary solutions; stable and unstable
(see Annexe 3). The solution of the evolution problem
approaches first an unstable solution along its stable
manifold and then diverges from it along its unstable
manifold. The it approaches in the same way another
unstable solution and so on. After several such cycles
it finally approaches a stable stationary solution and
does not changes after that. The number of cycles
depends on the parameters and on the initial
conditions.

2. 1D CASE WITH BRANCHING
We model here a growing plant as a system of
intervals, which we will can branches. The number
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and location of branches is not given a priori. They
will appear and grow according to some rules. In fact,
each branch grows according to the same mechanism
described above in the one-dimensional case without
branching. The difference is that all branches except
for the first one start from another branch and not
from the root. The opposite end of the branch
corresponds to the apical meristem. The end point of
each branch has its own value of GM-factor
concentration described by the equation similar to
(1.2).

We need to impose two additional conditions on the
concentration of nutrients at the points of branching,
that is, the point where another branch starts. The first
one is the continuity of the concentration, and the
second one is the conservation of fluxes (see Section
4). To write this relation, we need to know the relation
between cross section areas of branches below and
above the branching point. This question also
represents an independent interest. It appears that
there is conservation of cross section areas
asymptotically for a long time. It is satisfied with
good accuracy in actual trees.

Appearance of new branches in the model occurs
according to the following mechanism. First, there is a
new bud that can appear if some conditions on the
concentrations of plant hormones are satisfied. The
bud is considered as a small branch: it is connected to
another branch by one end point, and it has is apical
meristem at the other end point. The distribution of
nutrient inside the bud and the value of the GM-factor
determine whether it starts growing.

We consider two plant hormones in the model. One of
them corresponds to auxin and another one to
cytokinin. Both are produced in the growing parts of
the plant, in our case in the apical meristem, and are
transported through the whole plant. It is known that
these two hormones play an important role in
formation of new buds (see [11]). However, the
specific form of the branching condition is not known.
We discuss this question in Section 4 and suggest
branching conditions which seem to give the results in
agreement with biological observations.

We observe a wide variety of plant forms and study
more specifically the question of apical domination.

3.1D MODEL WITHOUT BRANCHING

3.1. Model

We consider in this section the one-dimensional case
justified if the length (or height) L of the plant is
essentially greater than the diameter of its trunk.
Hence we consider the interval 0 < x < L(¢) with
the length depending on time. The left endpoint

X = 0 corresponds to the root. Its role is to provide
the flux of nutrients taken into account through the
boundary condition. We do not model the root growth
here. Therefore the left boundary is fixed. The right

32

end point, x = L(¢) corresponds to the apex. Its

width is much less than that of the plant. We suppose
in the model that it is a mathematical point. The value
L(t) increases over time. According to the

assumption above, the growth rate is determined by
the concentration of metabolites at X = L(t ) , which

we denote by R . Thus
dL
= (R
7 J(R)
The function f(R) will be specified below.
We recall that the interval o< x< () cotresponds to

@.1)

differentiated cells that conduct nutrients from the
root to the apex. We suppose that they are in a liquid

solution. Denote by C their concentration, which is a
function of X and?. Its evolution is described by the
diffusion-advection equation.

ocC ocC o°C

—tu—=d ——.

ot dc ox’
Here u is the velocity of the fluid, and d is the
diffusion coefficient. Assuming that the fluid is
incompressible and fills the xylem uniformly (the part
of the plant tissue conducting nutrients from below to
above and located inside the cambium layer), we
obtain

2.2)

We complete equation (2.2) by setting the boundary
conditions

oC

x=0:C=1Lx=L(t):d — (23)
Ox

—g(R)C.

The second boundary condition shows that the flux of
nutrients from the main body of the plant to the
meristem is proportional to the concentration C (L, t).
This is a conventional relation for mass exchange at
the boundary, Robin boundary conditions. The factor
g(R) shows that this flux can be regulated by
proliferating cells. We discuss this assumption as well
as the form of the function g(R) below.
We now derive the equation describing the evolution
of R. At this point we need to return to the model in
which the width of the meristem is finite. We denote
it by h. Then we have

B gryC -, R

dt )

The first term in the right-hand side of this equation
describes production of the GM-factor R in the
meristem. The second term corresponds to its
consumption.
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System of equations (2.1)-(2.4) is a generic one-
dimensional model of plant growth based on:

a) '"continuous medium" assumptions of mass
conservation (for C + R ) and of the proportionality
of the flux 0 C / Ox at the boundary to the value of C;
and b) a "biological" assumption that there is a
chemical species R, the plant growth and mitosis
factor, which is produced in the meristem and which
determines the plant growth.We now specify the form

of the functions f and g . We will consider f as a
piecewise constant function equal to 0 if R is less than

a critical value R ’ and equal to some positive

constant fo if R is greater than R , (figure 1a). This

means that the growth begins if the concentration of
the plant growth factor exceeds some critical value.

The production of the growth factor R is assumed to
be auto-catalytic. To simplify the modelling we
consider a piece-wise linear function g(R) (Figure
1b). In some cases we also consider smooth
functions f and g .

"R 2

| RE

Fig.1.Function f and g.

These assumptions are consistent with plant
morphogenesis. It is well known, for example, that
auxin, produced in the apex, stimulates mitosis and
cell proliferation. Kinetin is also known to stimulate
cell proliferation. Production of mitosis factors can be
self-accelerating. "The ability of M-Cdk to activate its
own activator (Cdc25) and inhibit its own inhibitor
(Weel) suggests that M-Cdk activation in mitosis
involves a positive feedback loop similar
molecular switches operate at various points in the
cell cycle to ensure that events such as entry into
mitosis occur in an all-or-none fashion." [13], [14].

3.2. Stationary solutions

In this section we study stationary solutions of the
model described in the previous section. Since
f(R)=0 in this case, we obtain from (2.2)

C(x)zl—l_CL(L)x.

Then from (2.3) and (2.4)
oL
C(L)y=1—-—R.
(L) 7
Finally from (2.4)

—=g(R). @9
1-+“—R
d
This equation should be completed by the condition
R < R, (2.6)

Suchthat L' (¢) = 0 .
We assume in what follows thatp < g ! (0). Then

for all L sufficiently large, there exists a solution R of
equation (2.5) with condition (2.6). Depending on the
function g (R) there can exist more than one

solution with the same value of L.

Denote by F(R) the left-hand side in (2.5). The
standard linear stability analysis shows that the
stationary solution is stable if F'(R) > g'(R)

for a solution R.

4. NUMERICAL SIMULATIONS

The functions f and g are characterized by two
critical

Values: the length L (t) increases if R>R¢and the
production of R is strongly accelerated if R>R g.The
behaviour of the system is different in two cases, R ¢
>Ryand Ry<R,.

All simulations are carried out for d = 0.001 %/ tu, 6
=0.009 su/tu. Here,su is a space unit. We will vary h
and the initial length L,.

4.1. Linear growth

If R > R,, then length increase is close to a linear
function of time. It reaches its stationary value, and
then does not change (Figure 2). The final length
depends on h and L,= 0.1 and h from 0.001 to 0.05,
L ¢ changes from 2.54 to 2.50. If h = 2.50. If h =
0.001 and L, increases from 0.05 to 0.5, the final
length decreases from L ;- 2.56 to L (=2.40.

The value of R , assumed in the simulations is 0.01.
The concentration R is monotonically decreasing
over time, approaching its final value =~ 0.05.
Therefore, the results of the simulation remain the
same if the function g is identically constant (g =
0.01).

4.2. Periodic growth

The behaviour of the solution to problem (2.1)-(2.4)
is different if R ¢ <R ,. In this case the case the
growth is periodic is periodic in time (Figure 3a).
Short periods of growth are are separated by long
time intervals where the long time intervals where
the length does not change. The length is
approximately the same during all periods of growth
except for the first one, where it is one, where it is
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about two times greater. The periods without growth
become longer over time. This is related to the
growing length of the interval.

b)

E

Fig.2. Linear growth

For larger L it takes more time for the concentration
C (L, t) to become large enough for R (t) to increase.
Figure 3b shows the function R (t).
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Contrary to the previous case, the final length L ¢ is
very sensitive to the value of h (Figure 4). For h =
0.001 L = 14.56, for h = 0.003. L ¢= 4.19. The
number of periods of growth also varies with h. If for
two different values of h the number of periods of
growth is the same, then the final length depends on
h weakly.

The dependence of the final length on the initial
length remains weak. For h = 0.003, as L, changes
from 0.1 to 1.0 L ;changes from 4.19 to 4.61.

We recall that the first boundary condition in (2.3)
determines the amount of nutrient available for the
plant. The value of the concentration at the left
endpoint influences the number of growth intervals
and the final plant length. If we decrease the
boundary condition, the length also decreases
(Figure 4)
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Fig.4. Dependence of the final length on /4 for
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Conclusion

Genetic engineers might realize the requirement of
derivatives in making accurate calculation of number
of cells that occur in somatic cell that is brought into
use to manufacture a carbon-copy of the living body
human or non- human of which very cell has been
taken. The growth rate of somatic cell can very
accurately be estimated by making of derivatives.
Bio-technology makes use of derivational calculus to
obtain accurate and precise number value. Rate
mutation, reproduction of nucleotides in cell division
and their estimate value can be obtained in precise
and accurate numerical value by using derivatives.
Derivatives are brought in to use to measure different
sorts of biological phenomenon what occur in nature
with to different extremes what we call maxima and
minima. Exact calculation of these two extremities
can be made by using derivational equations. Such
types of derivational equation enable them to
determine the exact measurement and evaluation of
the speed which the very process supposed to have
occurred. Cytological processes can also exhibit the
variations in the number of organelles. The speed
with  which  reproduction and  population
enhancement has occurred can very exactly be
measured by using derivatives.

The growing part of the plant, or apex, contains a
narrow exterior part, the meristem where cells
proliferate providing the plant growth. This layer has
a constant width and consists of an approximately
constant number of cell layers specific to each plant.
Since it is very small compared to the whole plant, it
will be considered as a mathematical surface. The
displacement of this surface corresponds to the plant
growth. The appearance of new cells implies that old
cells exit this external layer after some time and
become a part of the internal plant tissue. They
differentiate, that is, they change their functions.
They cannot divide any more, and they serve to
conduct nutrients to the meristem.
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