
ISSN NO. 2456-3129

International Journal of Engineering, Pure and Applied Sciences,
Vol. 1, No.2, 2016

8

Optimal Production Schedule with Arbitrary Lags and
Job Block Criteria Consisting Graphical User Interface

Using Matlab
Dr. Deepak Gupta1, Harminder Singh1 , Dr.Avdhesh kumar2

Department of Mathematics,Maharishi Markandeshwar University1,Mullana(Ambala)India1

Department of applied sciences2,RIMT Institute of Engineering & Technology, Mandi Gobindgarh2

Email:harminder.cheema85@gmail.com1

Abstract: This paper is an attempt to study n jobs over two machines where processing times are associated
with respective probabilities and transportation time in addition with arbitrary lags i.e. start lag or stop lag. The
objective of the study is to develop an efficient algorithm to compute the production rate in an effective manner
or to minimize the total elapsed time in two stage flow-shop scheduling with different system parameters like
transportation, arbitrary lags also job block criteria. A numerical illustration as well as GUI is design to clarify
the proposed concept..

Index Terms-Flow-shop, start lag, stop lag, transportation time, job block, Graphical user interface.

1. INTRODCUTION

Schedulingis generally described as an allocation
of a set of resources over time to perform a set of
tasks. Scheduling emerges in various domains
such as hospital management, airlines, trains,
production scheduling etc. At each stage there is a
machine to perform the required set of jobs. In other
words scheduling refers to placing jobs in a certain
order or sequence so as to minimize the elapsed time
with no passing between the jobs. By the time lag we
meant the minimum time delay which is required
between the executions of two consecutive operations
of the same job. In actual time lag represents the time
when one job is moved one machine to another
machine is negligible. The start lag (Di>,0) is the
minimum time which must elapse between starting
job i on the first machine and starting it on the second
machine. The stop lag (Ei>,0) for the job i is the
minimum time which elapsed between the completing
it on second machine. Equivalent job-block
concept in the theory of scheduling has many
applications in the production concern, hospital
management etc. where priority of one job over
other becomes significant it may arise the
additional cost for providing this facility.

2. LITERATURE SURVEY

Johnson [1] gave procedure for finding the optimal
schedule for n-jobs, two machine flow-shop problem
with minimization of the make span (i.e. total elapsed
time) as the objective. Also Mitten and Johnson [2]
combined discussed the n job,2 machines flow-shop
Scheduling problem in which despite of processing

times some additional tags are introduced. Maggu
and Das [4]introduced the equivalent job-block
concept in the theory of scheduling which has
many applications in the production concern,
hospital management etc. where priority of one
job over other becomes significant it may arise
the additional cost for providing this
facility.Bagga [3], Maggu and Das [6],[7], Szwarch
[8], Yoshida & Hitomi [5], Singh, Anup [13], etc.
derived the optimal algorithm for two/ three or
multistage flow shop problems taking into account the
various constraints and criteria. Kern,W.
,Nawjin,W.M[10], Dell` Amico, M[11],
J.Riezebos,G.J.C Goalman[12] continues with dealing
different scheduling problems including time lags.
Singh, T.P.and Gupta, D.[9],[13][16], associated
probabilities with processing time and set up
time,transportation time as well as concept of
breakdown interval in their studies. Later, Singh, T.P,
Gupta, D[14],[15],[17] studied two /multiple flow
shop problem to minimize rental cost under a pre-
defined rental policy in which the probabilities have
been associated with processing time oneach machine.
The present paper addresses the flowshop scheduling
problem in which processing times are associated
with probabilities with arbitrary lags, transportation
and job block for effective scheduling.

Equivalent job block: Let there be two jobs i and
j is a sequence S to be processed on two
machines A and B in the order A B. Let the

ISSN NO. 2456-3129

International Journal of Engineering, Pure and Applied Sciences,
Vol. 1, No.2, 2016

9

equivalent job of i and j by denoted by a’ Then
Aa = Ai + Aj – min (Aj, Bi)
Ba = Bi + Bj – min (Aj , Bi)
Where Aa and Ba denote the processing time of
equivalent job ‘a’ on machine A and B
respectively.

Total Elapsed Time: it is the time interval
between starting the first job and completing the
last job including the idle time (if any) in a
particular order by the given set of the machines.
Processing Time (tj): It is the time required to
process job j. It includes both actual time as well
as set-up time.

Effective transportation: The effective
transportation time of job I denoted by ��,�����

` is
defined as ��,�����

` =max(Di-Gi ,Ei-H i ,T i,s�s+1)
where s=1,2,3,4….m-1
Where Gi=A i1+A i2+A i3+……A i(m-1) and Hi=
A i2+A i3+……A im
Concept of Transportation time in flow shop:
In many practical situations of scheduling it is
seen that machines are distantly situated and
therefore, definite finite time is taken in
transporting the job from one machine to another
if the form of.

i) Loading time of jobs.
ii) Moving time of jobs.
iii) Unloading time of jobs.

 The sum of all the above times has been
designated by various researches as
transportation time of a job. This
transportation time is the amount of time
required to dispatch the job i after it has been
completed on machine A, to the next
succeeding machine B for its onward
processing. It is denoted by ti for job i.

Assumptions

1. Each machine is assumed to be
continuously available for the assignment
of jobs.

2. No significant division of time scale into
shifts or days for the machines is
assumed.

3. No temporary availability of machines is
assumed to meet the certain causes of the
machines due to their break down or
maintenance etc.

4. No partition of a job is assumed to be
allowable.

5. No like machine of the same type is
allowed.

6. Each machine can handle at most one
operation at a time.

7. Pre-emption is not allowed, that is, once a
job is started it is performed to
completion.

8. The time intervals for processing are
independent of the order in which the jobs
are done.

9. The technological ordering of the
machines operating the jobs is known to
be predetermined.

10. The transportation times of jobs from one
machine to the other is assumed to be
negligible.

3. EQUIVALENT-JOB FOR A JOB-BLOCK
THEOREM DUE TO MAGGU AND DAS
(1977) IN TWO MACHINE FLOW-SHOP
PROBLEM:

In processing a schedule S = (α1, α2, … αk-1, αk, αk+1,
αk+2, …, αn) of n-jobs on two machines A and B in the
order AB with no passing allowed. The job-block (αk,
αk-1) having processing times {Aαk, Bαk,Aαk+1,Bαk+1} is
equivalent to the single job β (called equivalent-job
β).
 Now the processing times of job β on the
machines A and B denoted respectively by Aβ, Bβ are
given by

Aβ = Aαk + Aαk+1 – min {Bαk, Aαk+1},
Bβ = Bαk + Bαk+1 – min {Bαk, Aαk+1},

Proof: Let Tpq denote the completion time of job p on
machine q for the given sequence S, We can consider
the following relations:

Tαk B = max { Tαk A, Tαk-1 B } + Bαk
 = max { Tαk A + Bαk, Tαk-1 B + Bαk }
Tαk+1 B = max { Tαk+1 A, Tαk B } + Bαk+1

 = max { Tαk+1 A, Tαk A + Bαk, Tαk-1 B + Bαk } +
Bαk+1 = max { Tαk+1 A+ Bαk+1, Tαk A + Bαk + Bαk+1, Tαk-1

B + Bαk + Bαk+1 }
Now Tαk+1 A= Tαk A + Aαk+1

We have
Tαk+1 B = max { Tαk A + Aαk+1, Bαk+1, Tαk A + Bαk+ Bαk+1,
Tαk-1 B + Bαk + Bαk+1 },
Tαk+2 B = max { Tαk+2 A, Tαk+1 B } + Bαk+2,
= max { Tαk+2 A, Tαk A + Aαk+1 + Bαk+1, Tαk A + Bαk +
Bαk+1, Tαk-1 B + Bαk + Bαk+1 } + Bαk+2,
Now, it is obvious that
Tαk+2 A= Tαk A + Aαk+1 + Aαk+2,
Hence,
 Tαk+2 B = max { Tαk A + Aαk+1 + Aαk+1, Tαk A + Aαk+1 +
Bαk+1, Tαk A + Bαk + Bαk+1, Tαk-1 B + Bαk + Bαk+1 } +
Bαk+2,
Since max { Tαk A + Aαk+1 + Bαk+1, Tαk + Bαk + Bαk+1 }
 = Tαk A + max { Aαk+1, Bαk } + Bαk+1
Therefore, we have :
Tαk+2 B = max { Tαk A + Aαk+1 + Aαk+2, Tαk A + max {
Aαk+1, Bαk } + Bαk+1,Tαk-1 B + Bαk + Bαk+1 } + Bαk+2
 (1)

ISSN NO. 2456-3129

International Journal of Engineering, Pure and Applied Sciences,
Vol. 1, No.2, 2016

10

Tαk+2 A= Tαk-1 A+ Aαk + Aαk+1 + Aαk+2,
 = Tαk A + Aαk+1 + Aαk+2 (2)

Now define a sequence S΄ as
 Ś = (α1, α2, … αk-1, αk, αk-1, β, αk+2,
…, αn),
Where, Aβ = Aαk + Aαk+1 – C, (3)
 Bβ = Bαk + Bαk+1 – C, (4)
In (3) or (4) C is a constant.
Let T΄pq denote the completion time of job p on
machine q in the sequence S΄, so that

T΄βB = max { T́ βA, Tαk-1 B } + Bβ

 = max { T́ βA + Bβ, T΄αk-1 B + Bβ },
T΄αk+2 B = max { T́ αk+2 A, T΄βA + Bβ } + Bαk+2

= max { T́ αk+2 A, T΄βA + Bβ, T΄αk-1 B + Bβ } +
Bαk+2 … (5)
Now, it is obvious that
T΄αk+2 B = T΄αk-1 A + Aβ + Aαk+2

= Tαk-1 A + Aαk + Bαk+1 – C + Aαk+2

(As T΄αk-1 A= Tαk-1 A) (6)
 = Tαk A + Aαk+1 – C + Aαk+2
 (As Tαk A = Tαk-1 A+ Aαk)
T΄βA = T΄αk-1 A+ Aβ
 = Tαk-1 A+ Aαk + Aαk+1 – C (7)
T΄βA = Tαk A + Aαk+1 – C
Using (3), (4), (5), (6) and (7), we have

T΄αk+2 B = max { Tαk A + Aαk+1 – C + Aαk+2,
 Tαk A + Aαk+1 – C + Bαk + Bαk+1 – C,

T΄αk-1 B + Bαk + Bαk+1 – C} + Bαk+2
 (8)

Let C = min { Aαk+1, Bαk} (9)
Then Aαk+1 – C + Bαk = Aαk+1 – min { Aαk+1, Bαk } +
Bαk
 = max { Aαk+1, Bαk } (10)
Also T́ αk-1 B = Tαk-1 B (11)
Hence from (8), (9), (10) & (11), we have
T΄αk+2 B = max { Tαk A + Aαk+1 + Aαk+2 – C, Tαk A + max
(Aαk+1, Bαk) + Bαk+1 – C, Tαk-1 B + Bαk + Bαk+1 – C} +
Bαk+2
 = max { Tαk A + Aαk+1 + Aαk+2, Tαk A + max
(Aαk+1, Bαk) + Bαk+1, Tαk-1 B + Bαk + Bαk+1 } + Bαk+2 – C
 (12)
Hence from (1) and (12), we have

T΄αk+2 B = Tαk+2 B – C. (13)
From (2) & (6), it is obvious that

T΄αk+2 A= Tαk+2 A – C. (14)
From equations (13) and (14), it is clear that
replacement of job-block (αk, αk+1) in S by job β
decreases the completion times on both the machines
of the later job αk+2 by a constant C in S΄ as compared
for the job : αk+2 in S. Let T and T́ be the completion
times of sequences S and S΄, respectively. Then from
the above discussion, it is observed that T΄ = T – C,
hence when β replaces job αk, αk+1 in any sequence s
to produce a new sequence S΄, the completion times
on all the machines are changed by a value which is
independent of the particular sequence S. Hence the
substitution does not change the relative merit of

different sequences. Hence, job β is equivalent job for
job-block (αk, αk+1).

Theorem: Two-machine, n-job problem’ with
transportation times from our given original problem
replacing three times (Start-lag, Stop-lag,
transportation time) by single time t΄i
Proof: Let Uix and Tix denote Starting and
Completion times of any job i on machine X (X = A,
B, i = 1, 2, 3, ……, n) respectively in a sequence S.
From definition of Start-lag Di, we have
 UiB – UiA ≥ Di
Now TiA – UiA + Ai
i.e.,Hence, we have, UiB – (TiA - Ai) ≥ Di
i.e.,UiB – TiA ≥ Di - Ai (1)
From definition of Stop-lag Ei,
we have ,TiB - TiA ≥ Ei,
Now , TiB - UiB + Bi
Hence, we have UiB + Bi - TiA ≥ Ei
i.e., UiB - TiA ≥ Ei - Bi (2)
Also, from the definition of transportation time ti, we
have
 UiB - TiA ≥ ti (3)
Let t́ i = max {Di – Ai, Ei – Bi, ti} (4)
From (1), (2) and (3), it is obvious that

 UiB - TiA ≥ t΄i

 … (5)
Remarks
 (1) For every job I, Di = Ai and Ei = Bithen
the algorithm reduces to Maggu and Das (1980)
problem algorithm.
 (2) If either ti = 0, or Di ≥ Ai + ti, + Bi, then
the algorithm reduces to the Mitten-Johnson’s (2)
problem.
 (3) If ti = 0, Di = Ai, Ei = Bi, then the
algorithm reduces to Bellman’s (6) and Johnson’s [1]
problem.

4. NOTATIONS

S: Sequence of job 1, 2, 3, ……., n
M j : Machine j, j= 1, 2, ……….
A i: Processing time of ith job on machine A.
Bi: Processing time of ith job on machine B.
Aα: Expected processing time of ith job on machine
A.
Bα: Expected processing time of ith job on machine
B.
pi: Probability associated to the processing time Ai
of ith job on machine A.
qi: Probability associated to the processing time Bi
of ith job on machine B.
β: Equivalent job for job-block.
Si: Sequence obtained from Johnson’s procedure
to minimize rental cost.
Di: Start lag for job i
Ei: Stop lag for job i
Uix: Starting time of any job I on machine x

ISSN NO. 2456-3129

International Journal of Engineering, Pure and Applied Sciences,
Vol. 1, No.2, 2016

11

Tix: Completion time of any job on machine x
Ti,j� 	 : Transportation time of ith job from jth
machine to kth machine
T`

i, ,j� 	 :Effective transportation time from ith job
from jth machine to kth machine
CT(S): Completion time of 1st job of each
sequence Si on machine A

Algorithm:
Step 1: : Define expected processing time Aα as
shown in table 1
Step 2: let
�

` denote the effective transportation
times, defined by
�

`= max (Di-A i , Ei-B i ,t)
Step 3: Define two fictitious machines G & H
with processing time Gi& H i for job I on G & H
respectively, defined as:
Gi= A i+
�

` and Hi = bi+
�
`

Step4: Take equivalent job α = (ik, im) for the
given job block (ik, im) and define its
processing time using below:

 Gα = Gk + Gm – min(Gm, Hk)
 Hα = Hk + Hm – min(Gm, Hk)

Step5: Apply Johnson’s (1954) technique to
obtain the optimal string Si for the new reduced
problem obtained in step 4.
Step6: obtain in –out table for given problem in
order to find out the total elapsed time.

#define Max 10
// *************** variable declaration
***************//
static float jobs[Max][7]; //to store jobs processing
time, probability, Transportation Time, StartLag,
StopLag
static float exp_pro_time[Max][2];// to store Expected
Processing Time for Both Machine
static float exp_trans_time[Max];// to store Expected
Transportation Time
static float fictitious_time[Max][2];// to store
Factitious Time
static float job_block_table[Max][2];
static float in_out[Max][4];
int total_jobs; // to store total number of jobs
int job_block[2]; // to store job block
char johnson[Max+1];
// ************** end variable declaration
**************//
void get_job_detail() //function to get jobs Processing
time and probabiity for both machine and
Transporation Time , StartLag and StopLag
{int
i,j;/*floatarr2[5][7]={24,.3,10.0,.2,4.0,10.0,12.0,16.0,.
2,9.0,.3,13.0,7.0,10.0,
22.0,.2,8.0,.2,9.0,6.0,5.0,28.0,.1,12.0,.1,2.0,4.0,4.0,
20.0,.2,13.0,.2,5.0,8.0,7.0 };
 total_jobs=5;for(i=0;i<total_jobs;i++) {
for(j=0;j<7;j++) { jobs[i][j]=arr2[i][j]; }
}*/printf("\nEnter Number of Job for Two Machines :
");scanf("%d",&total_jobs);for(i=0;i<total_jobs;i++

){printf("\n\n Enter The Detail for The Job [%d
]",i+1);printf("\n\nEnter Processing Time for
Machine 1 : ");scanf("%f",&jobs[i][0]);// geting
Processing Time for the Job;printf("Enter Probility for
Machine 1 : ");scanf("%f",&jobs[i][1]);// geting
Probility for the jobprintf("Enter Processing Time for
Machine 2 : ");scanf("%f",&jobs[i][2]);// geting
Processing Time for the Job;printf("Enter Probility for
Machine 2 : ");scanf("%f",&jobs[i][3]);// geting
Probility for the jobprintf("Enter Transportation Time
:");
scanf("%f",&jobs[i][4]);//geting Transportation Time
for job
printf("Enter Start Lag : ");
scanf("%f",&jobs[i][5]);// geting Start Lag
printf("Enter Stop Lag : ");
scanf("%f",&jobs[i][6]);// geting Stop
Lag}//*/if(total_jobs>1){printf("\n\n Enter 1st Job no
for Job Block : ");scanf("%d",&job_block[0]);
printf("\n\n Enter 2nd Job no for Job Block :
");scanf("%d",&job_block[1]);
}}// end of get_job_detail function//void
put_job_detail() //function to show jobs Processing
time , probabiity, Transportation time , startLag,
stopLag for machine
{int i,j;printf("\n\t Machine1\t Machine2\t \n");
printf("\nJobs\tTime\tProb.\tTime\tProb.\tTr.Time\tSt
Lag\tSpLag");
for(i=0;i<total_jobs;i++){printf("\n\n[%d
]",i+1);printf("\t%.1f",jobs[i][0]);
printf("\t%.1f",jobs[i][1]);printf("\t%.1f",jobs[i][2]);
printf("\t%.1f",jobs[i][3]);printf("\t%.1f",jobs[i][4]);pr
intf("\t%.1f",jobs[i][5]);
printf("\t%.1f",jobs[i][6]);}}// end of Put_job_detail
function//
void get_exp_pro_time() // function to calculatig
expected processing time
{int
i,j;for(i=0;i<total_jobs;i++){exp_pro_time[i][0]=jobs[
i][0]*jobs[i][1];
exp_pro_time[i][1]=jobs[i][2]*jobs[i][3];}}// end of
get_exp_pro_time function//
void put_exp_pro_time() // function to showing
expected processing time
{int i,j;printf("\n\nExpected Proessing Time : -
");printf("\n\nJobs\t Machine1\t Machine2
\n");for(i=0;i<total_jobs;i++){
printf("\n\n[%d
]",i+1);for(j=0;j<2;j++){printf("\t\t%.1f",exp_pro_tim
e[i][j]);}
}}// end of Put_exp_pro_time function//float
get_max(float a,float b,float c)
{if(a>b && a>c)return a;else if (b>a && b>c)return
b;elsereturn c}
void get_exp_trans_time() // function is used to get
expected transportation time
{int
i;for(i=0;i<total_jobs;i++){exp_trans_time[i]=get_ma
x(jobs[i][5]-exp_pro_time[i][0],jobs[i][6]-

ISSN NO. 2456-3129

International Journal of Engineering, Pure and Applied Sciences,
Vol. 1, No.2, 2016

12

exp_pro_time[i][1],jobs[i][4]);}}//end of
get_exp_trans_time()void put_exp_trans_time(){int
i;printf("\n\n Expected Transportation Time :-
\n");printf("\nJobs\tTrans.Time\n");for(i=0;i<total_job
s;i++)
{ printf("\n%d\t%3.1f",i+1,exp_trans_time[i]);}}//
end of put_trans_time functionvoid
get_fictitious_time(){int i;for(i=0;i<total_jobs;i++)
{fictitious_time[i][0]=exp_pro_time[i][0]+exp_trans_
time[i];fictitious_time[i][1]=exp_pro_time[i][1]+exp_
trans_time[i];}}// end of function get_factitious_time
void put_fictitious_time(){int i,j;printf("\n\n Fictitious
Time :-\n");printf("\nJobs\tMachine A\tMachine
B\n");for(i=0;i<total_jobs;i++)
{printf("\n%d",i+1);for(j=0;j<2;j++)
printf("\t%.1f\t",fictitious_time[i][j]);}}
// end of function put_factitious_timefloat Min(float
a,float b)
{if(a>b)return b;elsereturn a;}void
get_job_block_table(){
int
i,ii=0,flag=0;for(i=0;i<total_jobs;i++){if(job_block[0]
-1==i || job_block[1]-1==i) {if(job_block[0]-1==i)
{job_block_table[ii][0]=fictitious_time[i][0]+fictitiou
s_time[job_block[1]-1][0]-
Min(fictitious_time[job_block[1]-
1][0],fictitious_time[i][1]);job_block_table[ii][1]=ficti
tious_time[i][1]+fictitious_time[job_block[1]-1][1]-
Min(fictitious_time[job_block[1]-
1][0],fictitious_time[i][1]);ii++; }
}els{job_block_table[ii][0]=fictitious_time[i][0];
job_block_table[ii][1]=fictitious_time[i][1]; ii++;
}}}//============================= end of
get_job_block_table funciton
void put_job_block_table()
{int i,j;printf("\n Jobs\tGi\tHi\n");for(i=0;i<total_jobs-
1;i++){if(i==job_block[0]-1)printf("\n%c",225);else
if(i>=job_block[1]-1)printf("\n%d",i+2);
elseprintf("\n%d",i+1);for(j=0;j<2;j++){printf("\t%.1f
",job_block_table[i][j]);}
}}// end of put_job_block_table funciton
void get_johnson_rule(){int
i,j,k,jj,kk,strl=0,lb=0,rb=0,flag=0,f;
float min;char str[50];rb=total_jobs-
1;for(i=0;i<total_jobs-
1;i++){min=9999;for(j=0;j<total_jobs-1;j++)
{for(f=0;f<strl;f++){if(j==str[f]-
48)break;}if(f!=strl)continue;for(k=0;k<2;k++)
{if(min>=job_block_table[j][k]){min=job_block_tabl
e[j][k];jj=j;kk=k;}}
}//end of jif(jj>=job_block[1]-
1)flag=1;elseflag=0;if(kk==0){
if(jj==job_block[0]-
1){johnson[lb]=jj+flag+48;lb++;str[strl]=jj+48;
strl++;johnson[lb]=job_block[1]+48+flag;lb++;}else{
johnson[rb]=jj+48+flag;
rb--;str[strl]=jj+48;strl++;}}// end of k
else{if(jj==job_block[0]-1){

johnson[rb]=job_block[1]+47+flag;rb--
;str[strl]=jj+48;strl++;johnson[rb]=jj+48+flag;rb--
;}else{johnson[rb]=jj+48+flag;
rb--
;str[strl]=jj+48;strl++;}}johnson[total_jobs]=NULL;p
rintf("\n Jonson rule : %s",johnson);
}// end of get_johnson_rule
======================================
================
void put_johnson_rule(){int i;i=0;printf("\n\n Jonson
Rule :-
\n\n");while(johnson[i]!=NULL){printf("\t%c",johnso
n[i]+1);i++;}
}// end of put_johnson_rule function
======================================
=======
void get_in_out()
{int i;int job;float prev1=0.0;float
prev2=0.0;for(i=0;i<total_jobs;i++)
{ job=johnson[i]-48; in_out[i][0]=prev1; // machine A
starting Time
 in_out[i][1]=prev1+fictitious_time[job][0];
// machine A ending time
 prev1=in_out[i][1];
in_out[i][2]=get_max(prev1+exp_trans_time[job],pre
v2,0); // machine B starting
Timein_out[i][3]=in_out[i][2]+fictitious_time[job][1];
// machine B ending time
 prev2=in_out[i][3];}}
// end of get_in_out function
======================================
===============
void put_in_out()
{int i;printf("\n\nIn-Out Table :-\n\n");
printf("\nJobs\tMachine_A\tExpected\tMachine_B");
 printf("\n\tIn-Out\t\tTrans.Time\tIn-Out\n");
for(i=0;i<total_jobs;i++){printf("\n%d",johnson[i]-
47);printf("\t%.1f-
%.1f",in_out[i][0],in_out[i][1]);printf("\t%.1f\t",exp_t
rans_time[johnson[i]-48]);printf("\t%.1f-
%.1f",in_out[i][2],in_out[i][3]);}}
// end of put_in_out function
======================================
===============
void show_me()
{int
gm=0,gd=0;initgraph(&gd,&gm,"");settextstyle(4,0,1
0);outtextxy(getmaxx()/2-200,getmaxy()/2-
100,"Welcome");setcolor(14);settextstyle(1,0,1);outte
xtxy(getmaxx()-350,getmaxy()-30,"Designed &
Developed by Harminder Singh");}void main(){
clrscr();show_me();getch();cleardevice();get_job_deta
il();put_job_detail();
getch();get_exp_pro_time();put_exp_pro_time()
;getch();get_exp_trans_time();put_exp_trans_time();g
etch();get_fictitious_time();
put_fictitious_time();getch();get_job_block_table();pu
t_job_block_table();

ISSN NO. 2456-3129

International Journal of Engineering, Pure and Applied Sciences,
Vol. 1, No.2, 2016

13

getch();get_johnson_rule();put_johnson_rule();getch()
;get_in_out();
put_in_out();getch();}

5. NUMERICAL ILLUSTRATION:

Obtain optimal sequence for 5 jobs and 2 machines
problem given by the following tableau1:

JOB
S

Machi
ne A

Machi
ne B

Transporta
tion
Time
Ti,j� 	

Sta
rt
La
g
Di

Sto
p

La
g
Ei

��
� �� ��

 ��

1 2
4

.3 1
0

.2 4 10 12

2 1
6

.2 9 .3 13 7 10

3 2
2

.2 8 .2 9 6 5

4 2
8

.1 1
2

.1 2 4 4

5 2
0

.2 1
3

.2 5 8 7

Tableau 1

Our objective is to minimize the total rental cost of
the machine, in which jobs are to be processed as a
group job (2, 4)

Solution: As per step 1: Define expected
processing time Aα, Bα on both machines A and B
respectively as shown in tableau-2

Tableau 2

As per step 2: t1
1= max (Di‒Ai, Ei‒Bi, ti)

=(10‒7.2,12‒2,4)
=max (2.8,10,4) =10
t2

1= max(7-3.2,7-2.7,13)=13
t3

1= max (6-4.4,5-1.6,9) =9
t4

1= max(4-2.8,4-1.2,2) =2.8
t5

1= max(8‒4, 7‒2.6, 5) =5
so by above we find the expected transportations time
as make fictitious machines as shown in tableau 3
As per step 3

Jobs Gi H i
1 7.2+10=17.2 2+10=12
2 3.2+13=16.2 2.7+13=15.7
3 4.4+9=13.4 1.6+9=10.6
4 2.8+2.8=5.6 1.2+2.8=4
5 4+5=9 2.6+5=7.6

Tableau 3

As per Step 4 Using equivalent job block criteria
β over job (2,4)
Gα = 16.2+5.6-min(5.6,15.7) = 16.2
Hα= 15.7+7.6-min (5.6,15.7) = 17.7

Jobs Gi H i
1 17.2 12
β 16.2 14.1
3 13.4 10.6
5 9 7.6

Tableau4

As per step 5: by applying Johnson rule:

5 � 1 3

Also
5 2 4 1 3

As per step 6: we prepare in our table as shown
in tableau 6

Tableau 6

Hence CT(S):=Total elapsed time is 101.3 and
optimal sequence Si is 5,2,4,1,3

REFERENCES

[1] Johnson S. M. (1954), “optimal two and
three stage production schedule with set up
times included” Nay Res Log Quart Vol 1 pp
61-68.

[2] Mitten,L.G(1958)”sequencing n jobs on
machines with arbitrary time lags”
management sciences,29,477-481

JOB
S

Machi
ne Aα

Machi
ne Bα

Transportat
ion
Time
T i,j� 	

Sta
rt
La
g
Di

Sto
p

lag
Ei

1 7.2 2 4 10 12
2 3.2 2.7 13 7 10
3 4.4 1.6 9 6 5
4 2.8 1.2 2 4 4
5 4 2.6 5 8 7

Jobs Machine A Expected
transpor-
tation time
T`‒

j� 	

Machine B
 IN-OUT IN-OUT

5 0-9 5 14-21.6
2 9-25.2 13 38.2-53.9
4 25.2-30.8 2.8 53.9-57.9
1 30.8-68.3 10 78.3-90.3

3 68.3-81.7 9 90.7-101.3

ISSN NO. 2456-3129

International Journal of Engineering, Pure and Applied Sciences,
Vol. 1, No.2, 2016

14

[3] Bagga, P.C.(1969), “Sequencing in a rental
situation”, Journal of Candian Operation
Research Society 7, pp.152-153.

[4] Maggu, P.L and Das, G, (1977), “Equivalent-
job block in job scheduling” Operation
research, Vol. 14, No.4 pp 277-281.

[5] Yoshida and Hitomi (1979), ‘Optimal two stage
production scheduling with set up times
separated’,AIIETransactions. Vol. II.pp 261-263.

[6] Maggu, P.L and Dass, G, (1980), “nx2
scheduling with transportation time” PAMS
vol (2) pp 1-6.

[7] Maggu & Das (1981), ‘On n x 2 sequencing
problem with transportation time of jobs’, Pure
and Applied Mathematika Sciences, 12-16.

[8] Szwarc,W(1983), “Flow shop problems with
time lags” Management Science29,477-481

[9] Singh , T.P., On n x 2 flow shop problem solving
job block, Transportation times, Arbitrary time
and Break-down machine times, PAMS Vol.
XXI, No. 1-2 (1985).

[10] Kern,W.,Nawjin,W.M(1991) “Scheduling multi-
operation jobs with time lags on a single
machine” Working paper University of Twente,
Holland.

[11] Dell` Amico, M (1993), “Shop problems with
two machines and time lags”Rapport Inferno
No.93/20,Poltecnico Di Milano, Dipatimento
Di Ellectronica E Informazione,Italy.

[12] J.Riezebos,G.J.C Goalman, "Time lag sze in
multiple operations flowshop scheduling
heuristics”European journal of operation research
105(1998)72-90.

[13] Anup (2002),"On two machine flow shop
problem in which processing time assume
Probabilities and there exists equivalent for an
ordered job block”, JISSO, Vol XXIII No.1-
4,pp.41-44.

[14] Singh T.P., K Rajindra and Gupta Deepak,
(2005)“ Optimal three stage production
schedule the processing time and set up
times associated with probabilities including
job block” Proceedings of National
Conference FACM pp.463-470.

[15] Singh, T.P, Gupta Deepak (2006), Minimizing
rental cost in two stage flow shop , the processing
time associated with probabilities including job

block, Reflections de ERA, Vol 1. issue 2, pp
107-120.

[16] Singh, T.P. & KUMAR, R. & GUPTA, D.
[2005] “Optimal three stage production
schedule, the processing and set up times
associated with probabilities including job
block criteria” published in proceedings of
National Conference on FACM, pp 463-470.

[17] Singh ,T.P., Vij, Indria and Kumar, sunil,
(2007), “Optimal Rental Cost in Restrictive
3-Stage scheduling including Job Block
concept” Acta Ciencia Indica, vol. XXXIII,
no.3, pp. 761-767

