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Abstract: This paper is an attempt to study n jobs over two machines where processing times are associated 
with respective probabilities and transportation time in addition with arbitrary lags i.e. start lag or stop lag. The 
objective of the study is to develop an efficient algorithm to compute the production rate in an effective manner 
or to minimize the total elapsed time in two stage flow-shop scheduling with different system parameters like 
transportation, arbitrary lags also job block criteria. A numerical illustration as well as GUI is design to clarify 
the proposed concept.. 
 

Index Terms-Flow-shop, start lag, stop lag, transportation time, job block, Graphical user interface. 

1. INTRODCUTION  

Schedulingis generally described as an allocation 
of a set of resources over time to perform a set of 
tasks. Scheduling emerges in various domains 
such as hospital management, airlines, trains, 
production scheduling etc. At each stage there is a 
machine to perform the required set of jobs. In other 
words scheduling refers to placing jobs in a certain 
order or sequence so as to minimize the elapsed time 
with no passing between the jobs. By the time lag we 
meant the minimum time delay which is required 
between the executions of two consecutive operations 
of the same job. In actual time lag represents the time 
when one job is moved one machine to another 
machine is negligible. The start lag (Di>,0) is the 
minimum time which must elapse between starting 
job i on the first machine and starting it on the second 
machine. The stop lag (Ei>,0) for the job i is the 
minimum time which elapsed between the completing 
it on second machine. Equivalent job-block 
concept in the theory of scheduling has many 
applications in the production concern, hospital 
management etc. where priority of one job over 
other becomes significant it may arise the 
additional cost for providing this facility. 

2. LITERATURE SURVEY 

Johnson [1] gave procedure for finding the optimal 
schedule for n-jobs, two machine flow-shop problem 
with minimization of the make span (i.e. total elapsed 
time) as the objective. Also Mitten and Johnson [2] 
combined discussed the n job,2 machines flow-shop 
Scheduling problem in which despite of processing  

 

times some additional tags are introduced. Maggu 
and Das [4]introduced the equivalent job-block 
concept in the theory of scheduling which has 
many applications in the production concern, 
hospital management etc. where priority of one 
job over other becomes significant it may arise 
the additional cost for providing this 
facility.Bagga [3], Maggu and Das [6],[7], Szwarch 
[8], Yoshida & Hitomi [5], Singh,  Anup [13], etc. 
derived the optimal algorithm for two/ three or 
multistage flow shop problems taking into account the 
various constraints and criteria. Kern,W. 
,Nawjin,W.M[10], Dell` Amico, M[11], 
J.Riezebos,G.J.C Goalman[12] continues with dealing 
different scheduling problems including time lags. 
Singh, T.P.and Gupta, D.[9],[13][16], associated 
probabilities with processing time and set up 
time,transportation time as well as concept of 
breakdown interval  in their studies. Later, Singh, T.P, 
Gupta, D[14],[15],[17] studied two /multiple flow 
shop problem to minimize rental cost under a pre-
defined rental policy in which the probabilities  have 
been associated with processing time oneach machine. 
The present paper addresses the flowshop scheduling 
problem in which processing times are associated 
with probabilities with arbitrary lags, transportation 
and job block for effective scheduling. 

Equivalent job block: Let there be two jobs i and 
j is a sequence S to be processed on two 
machines A and B in the order A B. Let the 
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equivalent job of i and j by denoted by a’ Then           
Aa = Ai  + Aj – min (Aj, Bi) 
Ba = Bi + Bj – min (Aj , Bi) 
Where Aa and Ba denote the processing time of 
equivalent job ‘a’ on machine A and B 
respectively. 

Total Elapsed Time: it is the time interval 
between starting the first job and completing the 
last job including the idle time (if any) in a 
particular order by the given set of the machines. 
Processing Time (tj ): It is the time required to 
process job j. It includes both actual time as well 
as set-up time. 

Effective transportation: The effective 
transportation time of job I denoted by ��,�����

`  is 
defined as ��,�����

`  =max(Di-Gi ,Ei-H i ,T i,s�s+1) 
where s=1,2,3,4….m-1 
Where Gi=A i1+A i2+A i3+……A i(m-1)  and Hi= 
A i2+A i3+……A im  
Concept of Transportation time in flow shop: 
In many practical situations of scheduling it is 
seen that machines are distantly situated and 
therefore, definite finite time is taken in 
transporting the job from one machine to another 
if the form of. 
 

i)  Loading time of jobs. 
ii)  Moving time of jobs. 
iii)  Unloading time of jobs. 

 The sum of all the above times has been 
designated by various researches as 
transportation time of a job. This 
transportation time is the amount of time 
required to dispatch the job i after it has been 
completed on machine A, to the next 
succeeding machine B for its onward 
processing. It is denoted by ti for job i. 

 
Assumptions  

1. Each machine is assumed to be 
continuously available for the assignment 
of jobs. 

2. No significant division of time scale into 
shifts or days for the machines is 
assumed. 

3. No temporary availability of machines is 
assumed to meet the certain causes of the 
machines due to their break down or 
maintenance etc. 

4. No partition of a job is assumed to be 
allowable. 

5. No like machine of the same type is 
allowed. 

6. Each machine can handle at most one 
operation at a time. 

7. Pre-emption is not allowed, that is, once a 
job is started it is performed to 
completion. 

8. The time intervals for processing are 
independent of the order in which the jobs 
are done. 

9. The technological ordering of the 
machines operating the jobs is known to 
be predetermined. 

10. The transportation times of jobs from one 
machine to the other is assumed to be 
negligible. 

 

3. EQUIVALENT-JOB FOR A JOB-BLOCK 
THEOREM DUE TO MAGGU AND DAS 
(1977) IN TWO MACHINE FLOW-SHOP 
PROBLEM: 

In processing a schedule S = (α1, α2, … αk-1, αk, αk+1, 
αk+2, …, αn) of n-jobs on two machines A and B in the 
order AB with no passing allowed. The job-block (αk, 
αk-1) having processing times {Aαk, Bαk,Aαk+1,Bαk+1} is 
equivalent to the single job β (called equivalent-job 
β). 
 Now the processing times of job β on the 
machines A and B denoted respectively by Aβ, Bβ are 
given by  

Aβ = Aαk + Aαk+1 – min {Bαk, Aαk+1}, 
Bβ = Bαk + Bαk+1 – min {Bαk, Aαk+1}, 

Proof: Let Tpq denote the completion time of job p on 
machine q for the given sequence S, We can consider 
the following relations: 
 
Tαk B  = max { Tαk A, Tαk-1 B } + Bαk 
 = max { Tαk A + Bαk, Tαk-1 B + Bαk } 
Tαk+1 B       = max { Tαk+1 A, Tαk B } + Bαk+1 

 = max { Tαk+1 A, Tαk A + Bαk, Tαk-1 B + Bαk } + 
Bαk+1  = max { Tαk+1 A+ Bαk+1, Tαk A + Bαk + Bαk+1, Tαk-1 

B + Bαk  + Bαk+1 } 
Now Tαk+1 A= Tαk A + Aαk+1 

We have  
Tαk+1 B = max { Tαk A + Aαk+1, Bαk+1, Tαk A + Bαk+ Bαk+1, 
Tαk-1 B + Bαk  + Bαk+1 }, 
Tαk+2 B = max { Tαk+2 A, Tαk+1 B } + Bαk+2,  
= max { Tαk+2 A, Tαk A + Aαk+1 + Bαk+1, Tαk A + Bαk + 
Bαk+1, Tαk-1 B + Bαk  + Bαk+1 } + Bαk+2, 
Now, it is obvious that  
Tαk+2 A= Tαk A + Aαk+1 + Aαk+2, 
Hence,  
 Tαk+2 B = max { Tαk A + Aαk+1 + Aαk+1, Tαk A + Aαk+1 + 
Bαk+1, Tαk A + Bαk + Bαk+1, Tαk-1 B + Bαk  + Bαk+1 } + 
Bαk+2, 
Since max { Tαk A + Aαk+1 + Bαk+1, Tαk + Bαk + Bαk+1 } 
  = Tαk A + max { Aαk+1, Bαk } + Bαk+1 
Therefore, we  have : 
Tαk+2 B = max { Tαk A + Aαk+1 + Aαk+2, Tαk A + max { 
Aαk+1, Bαk } + Bαk+1,Tαk-1 B + Bαk  + Bαk+1 } + Bαk+2 
                                          (1) 
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Tαk+2 A= Tαk-1 A+ Aαk  + Aαk+1 + Aαk+2, 
 = Tαk A + Aαk+1 + Aαk+2                     (2) 
 
Now define a sequence S΄ as  
  Ś  = (α1, α2, … αk-1, αk, αk-1, β, αk+2, 
…, αn), 
Where,     Aβ = Aαk  + Aαk+1 – C,  (3) 
  Bβ = Bαk  + Bαk+1 – C,  (4) 
In (3) or (4) C is a constant. 
Let T΄pq denote the completion time of job p on 
machine q in the sequence S΄, so that  

T΄βB = max { T́ βA, Tαk-1 B } + Bβ 

 = max { T́ βA + Bβ, T΄αk-1 B + Bβ }, 
T΄αk+2 B  = max { T́ αk+2 A, T΄βA + Bβ } + Bαk+2 

= max { T́ αk+2 A, T΄βA + Bβ, T΄αk-1 B + Bβ } + 
Bαk+2  … (5) 
Now, it is obvious that  
T΄αk+2 B  = T΄αk-1 A + Aβ + Aαk+2 

= Tαk-1 A + Aαk  + Bαk+1 – C + Aαk+2  

(As T΄αk-1 A= Tαk-1 A)            (6) 
  = Tαk A + Aαk+1 – C + Aαk+2 
  (As Tαk A = Tαk-1 A+ Aαk) 
T΄βA  = T΄αk-1 A+ Aβ 
 = Tαk-1 A+ Aαk + Aαk+1 – C                (7) 
T΄βA  = Tαk A + Aαk+1 – C 
Using (3), (4), (5), (6) and (7), we have  

T΄αk+2 B = max { Tαk A + Aαk+1 – C + Aαk+2, 
  Tαk A + Aαk+1 – C + Bαk + Bαk+1 – C, 

T΄αk-1 B + Bαk  + Bαk+1 – C} + Bαk+2 
                                (8) 

Let  C = min { Aαk+1, Bαk}          (9) 
Then Aαk+1 – C + Bαk = Aαk+1 – min { Aαk+1, Bαk } + 
Bαk 
 = max { Aαk+1, Bαk }    (10) 
Also  T́ αk-1 B = Tαk-1 B  (11) 
Hence from (8), (9), (10) & (11), we have  
T΄αk+2 B = max { Tαk A + Aαk+1 + Aαk+2 – C, Tαk A + max 
(Aαk+1, Bαk ) + Bαk+1 – C, Tαk-1 B + Bαk + Bαk+1 – C} + 
Bαk+2 
            = max { Tαk A + Aαk+1 + Aαk+2, Tαk A + max 
(Aαk+1, Bαk ) + Bαk+1, Tαk-1 B + Bαk  + Bαk+1 } + Bαk+2 – C
                                    (12) 
Hence from (1) and (12), we have  

T΄αk+2 B = Tαk+2 B – C.                        (13) 
From (2) & (6), it is obvious that  

T΄αk+2 A= Tαk+2 A – C.                        (14) 
From equations (13) and (14), it is clear that 
replacement of job-block (αk, αk+1) in S by job β 
decreases the completion times on both the machines 
of the later job αk+2 by a constant C in S΄ as compared 
for the job : αk+2 in S. Let T and T́ be the completion 
times of sequences S and S΄, respectively. Then from 
the above discussion, it is observed that T΄ = T – C, 
hence when β replaces job αk, αk+1 in any sequence s 
to produce a new sequence S΄, the completion times 
on all the machines are changed by a value which is 
independent of the particular sequence S. Hence the 
substitution does not change the relative merit of 

different sequences. Hence, job β is equivalent job for 
job-block (αk, αk+1). 
 
Theorem: Two-machine, n-job problem’ with 
transportation times from our given original problem 
replacing three times (Start-lag, Stop-lag, 
transportation time) by single time t΄i 
Proof: Let Uix and Tix denote Starting and 
Completion times of any job i on machine X (X = A, 
B, i = 1, 2, 3, ……, n) respectively in a sequence S. 
From definition of Start-lag Di, we have 
 UiB – UiA ≥ Di 
Now   TiA – UiA + Ai 
i.e.,Hence, we have,  UiB – (TiA - Ai) ≥ Di 
i.e.,UiB – TiA ≥ Di - Ai                                                                (1) 
From definition of Stop-lag Ei, 
we have ,TiB - TiA ≥ Ei, 
Now ,   TiB - UiB + Bi 
Hence, we have   UiB + Bi - TiA ≥ Ei 
i.e.,    UiB - TiA ≥ Ei - Bi           (2) 
Also, from the definition of transportation time ti, we 
have  
    UiB - TiA ≥ ti            (3) 
Let t́ i = max {Di – Ai, Ei – Bi, ti}                    (4) 
From (1), (2) and (3), it is obvious that  

     UiB - TiA ≥ t΄i  
  

 … (5) 
Remarks 
 (1) For every job I, Di = Ai and Ei = Bithen 
the algorithm reduces to Maggu and Das (1980) 
problem algorithm.  
 (2) If either ti = 0, or Di ≥ Ai + ti, + Bi, then 
the algorithm reduces to the Mitten-Johnson’s (2) 
problem. 
 (3) If ti = 0, Di = Ai, Ei = Bi, then the 
algorithm reduces to Bellman’s (6) and Johnson’s [1] 
problem. 

4. NOTATIONS 

S: Sequence of job 1, 2, 3, ……., n 
M j : Machine j, j= 1, 2, ………. 
A i: Processing time of ith job on machine A. 
Bi: Processing time of ith job on machine B. 
Aα: Expected processing time of ith job on machine 
A. 
Bα: Expected processing time of ith job on machine 
B. 
pi: Probability associated to the processing time Ai 
of ith job on machine A. 
qi: Probability associated to the processing time Bi 
of ith job on machine B. 
β: Equivalent job for job-block. 
Si: Sequence obtained from Johnson’s procedure 
to minimize rental cost. 
Di: Start lag for job i 
Ei: Stop lag for job i 
Uix: Starting time of any job I on machine x 
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Tix: Completion time of any job on machine x 
Ti,j� 	 :  Transportation time of ith job from jth  
machine to  kth  machine 
T`

i, ,j� 	  :Effective transportation time from ith job 
from jth  machine to  kth  machine 
CT(S): Completion time of 1st job of each 
sequence Si on machine A 

Algorithm: 
Step 1: : Define expected processing time Aα as 
shown in table 1 
Step 2: let 
�

` denote the effective transportation 
times, defined by 
�

`= max (Di-A i , Ei-B i ,t) 
Step 3: Define two fictitious machines G & H 
with processing time Gi& H i for job I on G & H 
respectively, defined as: 
Gi= A i+ 
�

`  and Hi = bi+
�
` 

Step4: Take equivalent job α = (ik, im) for the 
given job block (ik, im) and define its 
processing time using below: 

 Gα = Gk + Gm – min(Gm, Hk) 
 Hα = Hk + Hm – min(Gm, Hk) 

Step5: Apply Johnson’s (1954) technique to 
obtain the optimal string Si for the new reduced 
problem obtained in step 4. 
Step6: obtain in –out table for given problem in 
order to find out the total elapsed time. 
 
#define Max 10 
// *************** variable declaration 
***************// 
static float jobs[Max][7]; //to store jobs processing 
time, probability, Transportation Time, StartLag, 
StopLag 
static float exp_pro_time[Max][2];// to store Expected 
Processing Time for Both Machine 
static float exp_trans_time[Max];// to store Expected 
Transportation Time 
static float fictitious_time[Max][2];// to store 
Factitious Time 
static float job_block_table[Max][2]; 
static float in_out[Max][4]; 
int total_jobs; // to store total number of jobs 
int job_block[2]; // to store job block 
char johnson[Max+1]; 
// ************** end variable declaration 
**************// 
void get_job_detail() //function to get jobs Processing 
time and probabiity for both machine and 
Transporation Time , StartLag and StopLag 
{int 
i,j;/*floatarr2[5][7]={24,.3,10.0,.2,4.0,10.0,12.0,16.0,.
2,9.0,.3,13.0,7.0,10.0, 
22.0,.2,8.0,.2,9.0,6.0,5.0,28.0,.1,12.0,.1,2.0,4.0,4.0, 
20.0,.2,13.0,.2,5.0,8.0,7.0  }; 
 total_jobs=5;for(i=0;i<total_jobs;i++) {  
for(j=0;j<7;j++) { jobs[i][j]=arr2[i][j]; } 
}*/printf("\nEnter Number of Job for Two Machines : 
");scanf("%d",&total_jobs);for( i=0;i<total_jobs;i++ 

){printf("\n\n Enter The Detail for The Job [ %d 
]",i+1);printf("\n\nEnter Processing Time  for 
Machine 1 : ");scanf("%f",&jobs[i][0]);// geting 
Processing Time for the Job;printf("Enter Probility for 
Machine 1        : ");scanf("%f",&jobs[i][1]);// geting 
Probility for the jobprintf("Enter Processing Time  for 
Machine 2 : ");scanf("%f",&jobs[i][2]);// geting 
Processing Time for the Job;printf("Enter Probility for 
Machine 2        : ");scanf("%f",&jobs[i][3]);// geting 
Probility for the jobprintf("Enter Transportation Time  
:"); 
scanf("%f",&jobs[i][4]);//geting Transportation Time 
for job 
printf("Enter Start Lag  : "); 
scanf("%f",&jobs[i][5]);// geting Start Lag 
printf("Enter Stop Lag  : "); 
scanf("%f",&jobs[i][6]);// geting Stop 
Lag}//*/if(total_jobs>1){printf("\n\n Enter 1st Job no 
for Job Block : ");scanf("%d",&job_block[0]); 
printf("\n\n Enter 2nd Job no for Job Block : 
");scanf("%d",&job_block[1]); 
}}// end of get_job_detail function//void 
put_job_detail()  //function to show jobs Processing 
time , probabiity, Transportation time , startLag, 
stopLag for machine 
{int i,j;printf("\n\t  Machine1\t  Machine2\t \n"); 
printf("\nJobs\tTime\tProb.\tTime\tProb.\tTr.Time\tSt
Lag\tSpLag"); 
for(i=0;i<total_jobs;i++){printf("\n\n[ %d 
]",i+1);printf("\t%.1f",jobs[i][0]); 
printf("\t%.1f",jobs[i][1]);printf("\t%.1f",jobs[i][2]); 
printf("\t%.1f",jobs[i][3]);printf("\t%.1f",jobs[i][4]);pr
intf("\t%.1f",jobs[i][5]); 
printf("\t%.1f",jobs[i][6]);}}// end of Put_job_detail 
function// 
void get_exp_pro_time() // function to calculatig 
expected processing time 
{int 
i,j;for(i=0;i<total_jobs;i++){exp_pro_time[i][0]=jobs[
i][0]*jobs[i][1]; 
exp_pro_time[i][1]=jobs[i][2]*jobs[i][3];}}// end of 
get_exp_pro_time function// 
void put_exp_pro_time() // function to showing 
expected processing time 
{int i,j;printf("\n\nExpected Proessing Time : -
");printf("\n\nJobs\t  Machine1\t  Machine2 
\n");for(i=0;i<total_jobs;i++){  
printf("\n\n[ %d 
]",i+1);for(j=0;j<2;j++){printf("\t\t%.1f",exp_pro_tim
e[i][j]);} 
}}// end of Put_exp_pro_time function//float 
get_max(float a,float b,float c) 
{if(a>b && a>c)return a;else if (b>a && b>c)return 
b;elsereturn c} 
void get_exp_trans_time() // function is used to get 
expected transportation time 
{int 
i;for(i=0;i<total_jobs;i++){exp_trans_time[i]=get_ma
x(jobs[i][5]-exp_pro_time[i][0],jobs[i][6]-
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exp_pro_time[i][1],jobs[i][4]);}}//end of 
get_exp_trans_time()void put_exp_trans_time(){int 
i;printf("\n\n Expected Transportation Time :-
\n");printf("\nJobs\tTrans.Time\n");for(i=0;i<total_job
s;i++) 
{ printf("\n%d\t%3.1f",i+1,exp_trans_time[i]);}}// 
end of put_trans_time functionvoid 
get_fictitious_time(){int i;for(i=0;i<total_jobs;i++) 
{fictitious_time[i][0]=exp_pro_time[i][0]+exp_trans_
time[i];fictitious_time[i][1]=exp_pro_time[i][1]+exp_
trans_time[i];}}// end of function get_factitious_time 
void put_fictitious_time(){int i,j;printf("\n\n Fictitious 
Time :-\n");printf("\nJobs\tMachine A\tMachine 
B\n");for(i=0;i<total_jobs;i++) 
{printf("\n%d",i+1);for(j=0;j<2;j++) 
printf("\t%.1f\t",fictitious_time[i][j]);}} 
// end of function put_factitious_timefloat Min(float 
a,float b) 
{if(a>b)return b;elsereturn a;}void 
get_job_block_table(){ 
int 
i,ii=0,flag=0;for(i=0;i<total_jobs;i++){if(job_block[0]
-1==i || job_block[1]-1==i) {if(job_block[0]-1==i) 
{job_block_table[ii][0]=fictitious_time[i][0]+fictitiou
s_time[job_block[1]-1][0]-
Min(fictitious_time[job_block[1]-
1][0],fictitious_time[i][1]);job_block_table[ii][1]=ficti
tious_time[i][1]+fictitious_time[job_block[1]-1][1]-
Min(fictitious_time[job_block[1]-
1][0],fictitious_time[i][1]);ii++; } 
}els{job_block_table[ii][0]=fictitious_time[i][0]; 
job_block_table[ii][1]=fictitious_time[i][1]; ii++; 
}}}//============================= end of 
get_job_block_table funciton 
void put_job_block_table() 
{int i,j;printf("\n Jobs\tGi\tHi\n");for(i=0;i<total_jobs-
1;i++){if(i==job_block[0]-1)printf("\n%c",225);else 
if(i>=job_block[1]-1)printf("\n%d",i+2); 
elseprintf("\n%d",i+1);for(j=0;j<2;j++){printf("\t%.1f
",job_block_table[i][j]);} 
}}// end of put_job_block_table funciton 
void get_johnson_rule(){int 
i,j,k,jj,kk,strl=0,lb=0,rb=0,flag=0,f; 
float min;char str[50];rb=total_jobs-
1;for(i=0;i<total_jobs-
1;i++){min=9999;for(j=0;j<total_jobs-1;j++) 
{for(f=0;f<strl;f++){if(j==str[f]-
48)break;}if(f!=strl)continue;for(k=0;k<2;k++) 
{if(min>=job_block_table[j][k]){min=job_block_tabl
e[j][k];jj=j;kk=k;}} 
}//end of jif(jj>=job_block[1]-
1)flag=1;elseflag=0;if(kk==0){ 
if(jj==job_block[0]-
1){johnson[lb]=jj+flag+48;lb++;str[strl]=jj+48; 
strl++;johnson[lb]=job_block[1]+48+flag;lb++;}else{
johnson[rb]=jj+48+flag; 
rb--;str[strl]=jj+48;strl++;}}// end of k 
else{if(jj==job_block[0]-1){ 

johnson[rb]=job_block[1]+47+flag;rb--
;str[strl]=jj+48;strl++;johnson[rb]=jj+48+flag;rb--
;}else{johnson[rb]=jj+48+flag; 
rb--
;str[strl]=jj+48;strl++;}}johnson[total_jobs]=NULL;p
rintf("\n Jonson rule : %s",johnson); 
}// end of get_johnson_rule 
======================================
================ 
void put_johnson_rule(){int i;i=0;printf("\n\n Jonson 
Rule :-
\n\n");while(johnson[i]!=NULL){printf("\t%c",johnso
n[i]+1);i++;} 
}// end of put_johnson_rule function 
======================================
======= 
void get_in_out() 
{int i;int job;float prev1=0.0;float 
prev2=0.0;for(i=0;i<total_jobs;i++) 
{ job=johnson[i]-48; in_out[i][0]=prev1; // machine A 
starting Time 
  in_out[i][1]=prev1+fictitious_time[job][0]; 
// machine A ending time 
  prev1=in_out[i][1]; 
in_out[i][2]=get_max(prev1+exp_trans_time[job],pre
v2,0); // machine B starting 
Timein_out[i][3]=in_out[i][2]+fictitious_time[job][1]; 
// machine B ending time 
  prev2=in_out[i][3];}} 
// end of get_in_out function 
======================================
=============== 
void put_in_out() 
{int i;printf("\n\nIn-Out Table :-\n\n"); 
printf("\nJobs\tMachine_A\tExpected\tMachine_B"); 
 printf("\n\tIn-Out\t\tTrans.Time\tIn-Out\n"); 
for(i=0;i<total_jobs;i++){printf("\n%d",johnson[i]-
47);printf("\t%.1f-
%.1f",in_out[i][0],in_out[i][1]);printf("\t%.1f\t",exp_t
rans_time[johnson[i]-48]);printf("\t%.1f-
%.1f",in_out[i][2],in_out[i][3]);}} 
// end of put_in_out function 
======================================
=============== 
void show_me() 
{int 
gm=0,gd=0;initgraph(&gd,&gm,"");settextstyle(4,0,1
0);outtextxy(getmaxx()/2-200,getmaxy()/2-
100,"Welcome");setcolor(14);settextstyle(1,0,1);outte
xtxy(getmaxx()-350,getmaxy()-30,"Designed & 
Developed by Harminder Singh");}void main(){ 
clrscr();show_me();getch();cleardevice();get_job_deta
il();put_job_detail(); 
getch();get_exp_pro_time();put_exp_pro_time() 
;getch();get_exp_trans_time();put_exp_trans_time();g
etch();get_fictitious_time(); 
put_fictitious_time();getch();get_job_block_table();pu
t_job_block_table(); 
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getch();get_johnson_rule();put_johnson_rule();getch()
;get_in_out(); 
put_in_out();getch();} 
 

5. NUMERICAL ILLUSTRATION: 

Obtain optimal sequence for 5 jobs and 2 machines 
problem given by the following tableau1: 
 
 
JOB
S 

Machi
ne A 

Machi
ne B 

Transporta
tion 
Time 
Ti,j� 	 

Sta
rt 
La
g 
Di 

Sto
p 
 
La
g 
Ei 

��
� �� ��


 �� 

1 2
4 

.3 1
0 

.2 4 10 12 

2 1
6 

.2 9 .3 13 7 10 

3 2
2 

.2 8 .2 9 6 5 

4 2
8 

.1 1
2 

.1 2 4 4 

5 2
0 

.2 1
3 

.2 5 8 7 

Tableau 1 
 
Our objective is to minimize the total rental cost of 
the machine, in which jobs are to be processed as a 
group job (2, 4)  
 
Solution: As per step 1: Define expected 
processing time Aα, Bα on both machines A and B 
respectively as shown in tableau-2 

Tableau 2 

As per step 2: t1
1= max (Di‒Ai, Ei‒Bi, ti) 

=(10‒7.2,12‒2,4) 
=max (2.8,10,4) =10 
t2

1= max(7-3.2,7-2.7,13)=13 
t3

1= max (6-4.4,5-1.6,9) =9 
t4

1= max(4-2.8,4-1.2,2) =2.8 
t5

1= max(8‒4, 7‒2.6, 5) =5 
so by above we find the expected transportations time 
as make fictitious machines as shown in tableau 3 
As per step 3 

Jobs Gi  H i  
1 7.2+10=17.2 2+10=12 
2 3.2+13=16.2 2.7+13=15.7 
3 4.4+9=13.4 1.6+9=10.6 
4 2.8+2.8=5.6 1.2+2.8=4 
5 4+5=9 2.6+5=7.6 

Tableau 3 
 
As per Step 4  Using equivalent job block criteria 
β over job (2,4)  
Gα = 16.2+5.6-min(5.6,15.7) = 16.2 
Hα= 15.7+7.6-min (5.6,15.7) = 17.7 
 

Jobs Gi  H i  
1  17.2 12 
β  16.2 14.1 
3  13.4 10.6 
5  9 7.6 

Tableau4 
 

As per step 5:  by applying Johnson rule: 
 

5 � 1 3 

Also 
5 2 4 1 3 

 
As per step 6: we prepare in our table as shown 
in tableau 6 
 

Tableau 6 
 
Hence CT(S):=Total elapsed time is 101.3 and 
optimal sequence Si is 5,2,4,1,3 
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