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Abstract- Temperature variations are one of the most important causes of failure mechanisms in typical 
aerospace structures. These structures are subjected to severe thermal environments: high temperatures, high 
gradients and cyclic temperature changes. Due to these implications, the effects of both high-temperature and 
mechanical loadings have to be considered in the design process of such structures. Because the factors that 
affect the performance of an isolator are numerous, the type of vibration isolator to be used depends largely on 
the application of the device. So, it is essentially required to have the knowledge of vibration for a designer. 
Here, present investigation is to study the vibrations of elliptic plate with bi-dimensional parabolic varying 
thickness and temperature. Rayleigh-Ritz’s method has been applied to derive the frequency equation of the 
plate. All results are illustrated with Graphs. 

Index Terms- plate, thickness, frequency, taper constant 

1. INTRODUCTION 

For decades, engineers and scientists have endeavored 
to develop effective methods for mitigating unwanted 
vibrations. Suppressing vibrations is often a critical 
issue, as vibrations have been known to cause 
structural damage and annoyance in a whole host of 
systems. Such examples range from a “bumpy” ride in 
an automobile to fatigue failures in aircraft 
components. In order to minimize the effects of these 
unwanted vibrations, a multitude of isolation devices 
have been designed for use in applications ranging 
from machinery and automobiles to buildings and 
aerospace structures .Because the factors that affect 
the performance of an isolator are numerous, the type 
of vibration isolator to be used depends largely on the 
application of the device. In the aeronautical field, 
analysis of thermally induced vibrations in elliptic 
plate of variable thickness has a great interest due to 
their utility in aircraft wings. So, it is essentially 
required to have the knowledge of vibration for a 
designer. 
Here, present investigation is to study the vibrations 
of elliptic plate with bi-dimensional parabolic varying 
thickness and thermal effect. Rayleigh-Ritz’s method 
has been applied to derive the frequency equation of 
the plate. All results are illustrated with Graphs. 

2. MODELING 

It is assumed that the elliptic plate has a steady two 
dimensional parabolic temperature distribution given 
by: 

      � � �� �1 � ��
	� � 
�

���                      (1) 

 
 
Where � signifies the excess of temperature at any 
point on plate higher than the reference temperature 
and �� denotes the temperature at any point on the 
boundary of plate .For most of engineering materials, 
the temperature dependence of the modulus of 
elasticity is given as 
                      
 � 
��1 � ���                  (2) 
Where, 
�is the value of the Young's modulus at 
reference temperature i.e.  � � 0 and � is the slope of 
the variation of E with �. The modulus variation 
becomes: 

       
 � 
� �`1 � � �1 � ��
	� � 
�

����             (3) 

Where � � � ���0 � � � 1� and � is length of a side 
of elliptical plate. 
It is assumed that thickness � varies parabolic in two 
directions as shown below: 

           � � ��  �1 � � �1 � ��
	� � 
�

����            (4) 

Where � is length of a side of elliptical plate and � is 
taper parameters in x- & y- directions respectively and � � �� at x=y=0.  
Major headings should be typeset in boldface with the 
words uppercase. 

3. SOLUTION OF PLATE MODELING 

Deflection function ���,  � of plate is assumed to be 
finite sum of characteristics functions is taken as: ���,  � � !" # !$        (5) 
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where !" � %&$ ' (1 � �1 � �
�� � �1 � 


��)$*and   

!$ � %&$ ' (1 � �1 � �
	� � �1 � 


��)+*   
Also, satisfying relevant geometrical boundary 
conditions.  
Since, the plate is assumed as clamped at all the four 
edges, so the boundary conditions are: 
 
               � � �,� � 0,      � � 0, , 
               � � �,
 � 0,       � 0, ,              (6) 
Now assuming the non-dimensional variables as: 

- � �
, , . �  

, , �/ � �
, , 01 � 0

, 

According to Rayleigh-Ritz method, maximum strain 
energy and maximum kinetic energy are equal as: 
                      2�3' � 4'� � 0              (7) 
The kinetic energy 4' and strain energy 3'are: 
 

          4' � 5 5 �6"78�
�

"
�  �11119.9-               (8) 

and 

3' � 5 5 :"6"78�
�

"
� ;<�/,��=$ # <�/,

=$ #

2?�/,���/,

 # 2�1 � ?�<�/,�
=$@9.9-        (9) 
where A � �/,, :" is flexural rigidity and 

            :" � CDE
"$�"7F��. 

By using the value of 
 and  � , the value of :" 
becomes:  

:" � %
� G`1 � � (1 � -$ � .$ ' �	
��$)H ' ��+ (1 �

� �1 � -$ � .$ ' 	
��)+I /12�1 � J$�        (10) 

Using equations (8) & (9) in equation (7) after putting 
the values of � and :", one get: 
                �3' � K$L$4'� � 0         (11) 
Where 
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and 
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�
"

�
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Parameter of frequency is given as K$ � "$P	Q<"7R�=
CSDS� . 

Now, on substituting the value of W, equation consist 
of two unknown constants i.e. &"&&$ which is 
evaluate as follow: 

U<V''7W�X''=
UYZ � 0,       [ � 1, 2               (14) 

On simplifying, we get \["&" # \[$&$ � 0,     [ � 1, 2          (15) 
where, \[", \[$,   �[ � 1, 2� include parametric 
constant and the frequency parameter. For having 
solution to be non-trivial, the determinant of the 
coefficient matrix should be zero. So we get equation 
of frequency as 

                  ]\"" \"$\$" \$$] � 0                       (16) 

On solving equation (16), we obtained quadratic 
equation in λ2. The solution value of λ2 represent the 
frequency vibration of two modes i.e. λ1 (Ist Mode) & 
λ2 (IInd Mode) for clamped plate with different values 
of thermal gradient and taper constant. 

4. RESULT AND DISCUSSION 

Frequency equation (16) is quadratic in λ
2, so it will 

give two roots. The frequency is derived for the first 
two modes of vibration for homogenous elliptical 
plate having linearly varying thickness in both the 
directions, for various values of taper constant and 
thermal gradient. The value of Poisson ratio ν has 
been taken 0.345. These results are presented in 
figures (1-4) for first two modes of vibration for 
elliptical plate. 
In Figure 1:- It is clearly seen that as thermal 
gradient increases from 0 to 1 results frequency 
decreases. Figure1 has shown the results for the 
following three cases: 
β= A = 0.0, a/b=1.5 
β= A = 0.3, a/b=1.5 
β= A = 0.6, a/b=1.5 

In Figure 2:- Also, it is observed that for both modes 
of vibration, the frequency decreases with increases in 
thermal gradient β from 0 to 1. Figure 2 has shown the 
results for the following three cases: 
α = A=0, a/b=1.5 
α= A =0, a/b=1.5 
α= A =0, a/b=1.5 

In Figure 3:- It is observed that for both modes of 
vibration, frequency parameter increases with 
increases in aspect ratio a/b from 0.5 to 3.  Figure 3 
has shown the results for the following three cases: 
α =0.0, β= 0.0 
α =0.3, β= 0.3 
α =0.6, β= 0.6 

In Figure 4:- It is seen that with increases in A from 0 
to 1 then frequency increases for both modes of 
vibrations.  Figure 4 has shown the results for the 
following three cases: 
α = β=0, a/b=1.5 
α= β =0, a/b=1.5 
α= β =0, a/b=1.5 
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Figure 1: Frequency of elliptic plate for different 
values of thermal gradient (α) 
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Figure 2: Frequency of elliptic plate for different 
values of taper constant (β) 
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Figure 3: Frequency of elliptic plate for different 
values of aspect ratio (a/b) 
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Figure 4: Frequency of elliptic plate for different 
values of A 
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CONCLUSION 
It  can  be clearly seen  from  the  figures  that  
frequency parameter  decreases  with  an  increase  
in  taper  constant  and thermal gradient. Also, 
frequency increases with increase in the value of 
aspect ratio.  Actually  this  is  the need of the hour 
to develop more but authentic mathematical model  
for  the  help  of  mechanical  engineers.  
Therefore mechanical engineers and technocrats 
are advised to study and get the practical 
importance of the present paper and to provide 
much better structure and machines with more 
safety and economy.  
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