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Abstract: -The aim of this paper is the problem of chip memory selection for computationally intensive 
applications by proposing scratch pad memory as an alternative to cache. Area and energy for different scratch 
pad and cache size are computed using CACTI tools while performance was evaluated using the trace results. In 
this paper, an algorithm integrated into a compiler is presented which analyses the application and selects 
program and data parts which are placed into the scratchpad. Comparisons against a cache solution show 
remarkable advantages between 12% and 43% in energy consumption for designs of the same memory size. 
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1. INTRODUCTION 

The salient feature of portable devices is light 
weight and low power consumption. Applications in 
multimedia, video processing, speech 
processing[1], DSP applications and wireless 
communication require efficient memory design 
since on chip memory occupies more than 50% of 
the total chip area [2]. This will typically reduce 
the energy consumption of the memory unit, 
because less area implies reduction in the total 
switched capacitance. On chip caches using 
static RAM consume power in the range of 25% 
to 45% of the total chip power [3]. Recently, 
interest has been focused on having on chip scratch 
pad memory to reduce the power and improve 
performance. On the other hand, they can replace 
caches only if they are supported by an effective 
compiler. Current embedded processors 
particularly in the area of multimedia applications 
and graphiccontrollers have on-chip scratch pad 
memories. In cache memory systems, the mapping 
of program elements is done during runtime, 
whereas in scratch pad memory systems this is 
done either by the user or automatically by the  
compiler using suitable algorithm. Although 
prior studies into scratch pad memory behavior 
for embedded systems have been conducted, the 
impact on area has not been addressed. This 
paper compares cache/scratch pad area models 
along with their energy models. Specifically we 
address the following issues. To support 
comparison of memory systems we generate area 
models for different cache and scratchpad memory. 
Further, energy consumed per access for cache 
and scratchpad is computed for different sizes of 
cache and scratchpad. We develop a systematic 
framework to evaluate the area-performance 
tradeoff of cache/scratch pad based systems.  

 

Experimental environment requires the use of a 
packing algorithm (which is a compiler support) 
to map the elements onto the scratchpad memory. 
Finally, we report the performance and energy 
consumption for different cache and scratchpad 
sizes, for the various applications. We include the 
main memory energy consumption to study the 
complete system energy requirements. The rest of 
the paper is organized as follows. In section Awe 
explain the scratch pad memory area and energy 
models. In section B, we present cache memory 
used in our work. Section C describes the 
methodology and the experimental setup and 
section VI contains the results. In section VII we 
conclude and also specify the future work. 

 

 

Fig 1: Block Diagram of Embedded   Processor 
Application 

2. SCRACTH AND MEMORY 
Scratch pad is a memory array with the decoding 
and the column circuitry logic. This model is 
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designed keeping in view that the memory objects 
axe mapped to the scratch pad in the last stage of 
the compiler. The assumption here is that the 
scratch pad memory occupies one distinct part of 
the memory address space with the rest of the 
space occupied by main memory. Thus, we need 
not check for the availability of the 
data/instruction in the scratch pad. It reduces the 
comparator and the signal miss/hit acknowledging 
circuitry. This contributes to the energy as well as 
area reduction. The cell has one R/W port. Each 
cell has two bit-lines, bit and bit bar, and one 
word-line. the area of the scratch pad is the sum 
of the area occupied by the decoder, data array 
and the column circuit. The scratch pad memory 
energy consumption can be estimated from the 
energy consumption of its components i.e.decoder 
and memory columns.Energy in the memory array 
consists of the energy consumed in the sense 
amplifiers, column multiplexers, the output driver 
circuitry, and the memory cells due to the word 
line, pre-charge circuit and the bit line circuitry. 
The major energy consumption is due to the 
memory array unit. The procedure followed in the 
CACTI tool to estimate the energy consumption is 
to first compute the capacitances for each unit. 
Then, energy is estimated. As an example we only 
describe the energy computation for the memory 
array. Similar analysis is performed for the 
decoder circuitry also, taking into account the 
various switching activity at the inputs of each 
stage.In the preparation for an access, bit-lines are 
pre-charged and during actual read/write, one side 
of the bit lines are pulled down. Energy is 
therefore dissipated in the bit-lines due to pre-
charging and the read/write access. When the 
scratch pad memory is accessed, the address 
decoder first decodes the address bits to find the 
desired row. The transition in the address bits 
causes the charging and discharging of 
capacitances in the decoder path. This brings 
about energy dissipation in the decoder path. The 
transition in the last stage, which is the word-line 
driver stage triggers the switching in the word-
line. Regardless of how many address bits change, 
only two word-lines among all will be switched. 
One will be logic 0 and the other will be logic 1. 

3. CACHE MEMORY 

Cache memory is random access memory that a 
computer microprocessor can access more quickly than 
it can access regular RAM[6].As the microprocessor 
processes data, it looks first in the cache memory and if 
it finds the data there (from a previous reading of data), 
it does not have to do the more time-consuming 
reading of data from larger memory. Cache memory is 
sometimes described in levels of closeness and 
accessibility to the microprocessor. In addition to 

cache memory, one can think of RAM itself as a cache 
of memory for hard disk storage since all of RAM's 
contents come from the hard disk initially when you 
turn your computer on and load the operating system 
(you are loading it into RAM) and later as you start 
new applications and access new data. RAM can also 
contain a special area called a disk cache that contains 
the data most recently read in from the hard disk. 
Caches are mainly used to exploit the temporal and 
spatial locality of memory accesses. Area model that 
we use in our work is based on the transistor count in 
the circuitry. All transistor counts are computed from 
the designs of circuits. 

4. SCRACTHPAD MEMORY PRAPHERNALIA 
ANDS METHODS 

There are different type’s scratchpad memory 
paraphernalia and method like static memory and 
dynamic memory. Static memory location don’s 
change at runtime and dynamic memory locations 
change at runtime. Find a technique for efficiently 
exploiting on-chip SPM by partitioning the 
application’s scalar and array variables into off-chip 
DRAM and on-chip SPM Minimize the total execution 
time of the application. The method is to Use profiling 
to estimate reuse, Copy variables in to SRAM when 
reused, Cost model ensures that benefit exceeds cost, 
Transfers data between the on chip and off chip 
memory under compiler supervision, Compiler-known 
data allocation at each point in the code. 

4.1. Scratch pad memory accesses 
From the trace file, it is possible to do the performance 
estimation. As the scratch pad is assumed to use part of 
the total memory address space, from the address 
values obtained by the trace analyzer, the access is 
classified as going to scratch pad or memory and an 
appropriate latency or check points are added to the 
overall program delay. One cycle is assumed if it is a 
scratch pad read or writes access. If it is a main 
memory 16 bit access then we take it as one cycle plus 
1 wait state (refer to Table 1). If it is a main memory 
32 bit access then, we consider it as one cycle plus 3 
wait states. The total time in number of clock cycles 
taken is used to conclude the performance. 

4.2. Cache memory accesses 
From the trace file it is possible and easy to obtain the 
number cache read hits, read misses, write hits and 
write misses. 

Table 1: Memory access cycles 
Access Number of Cycles 

Cache Using Table 2 

Scratch Pad 1 Cycle 

Main Memory 16 bit 1 Cycle + 1 wait state 

Main Memory 32 bit 1 Cycle +3 wait state 
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From this data, we figure out the number of accesses to 
cache based on Table 2, where the number of cycles 
required for each type of access is given in Table 1. 
The cache is a write through cache. There are four 
cases of cache access that we consider in our model. 
1) Cache read hit: When the CPU requires some 

data, the tag array of the cache is accessed. If there 
is a cache read hit, then data is read from the 
cache. No write to the cache is done, and main 
memory is not accessed for a read or writes. 

2) Cache read miss: When there is a cache read miss, 
it implies that the data is not in the cache, and the 
Line has to be brought from main memory to 
cache. In this case we have a cache read operation, 
followed by L words to be written in the cache, 
where L denotes the line size. Hence, there will be 
a main memory read event of size L with no main 
memory write. 

3) Cache write hit: If there is a cache write hit, we 
have a cache write, followed by a main memory 
write. 

4) Cache write miss: In case of a cache write miss, a 
cache tag read (to establish the miss) is followed 
by the main memory writes. There is no cache 
update in this case. 

 
Table 2: Cache memory interaction model 

 
Access 

Type 
Caread Cawrite Mmread Mmwrite 

Read hit 1 0 0 0 

Read miss 1 L L 0 

Write hit 0 1 0 1 

Write miss 1 0 0 1 

4.3. METHODOLOGY 

Clock cycle estimation is based on the ARMulator 
trace output for cache or scratch pad memory. This is 
understood to directly focus the performance which 
means the larger the number of clock cycles the lower 
the performance. The theory that the change in the on-
chip memory configuration (cache/scratch pad memory 
and its size) does not change the clock period. This 
hypothesis though restrictive doesn’t affect our results. 
Because we always compare the same size cache with 
scratch pad memory and the delay of cache 
implemented with the same technology will always be 
higher as compare to others. Thus, the performance 
improvement predicted for scratch pad can only 
increase if both effect the clock period. The 
identification and assignment of critical data structures 
to scratch pad was based on a packing algorithm. 
 

5. RESULTS AND DISCCUSION 

5.1. Permeation Test 

The diffusivity and the permeation rate of the 
interstitial free steel at 300 C with a constant charging 
current density (10 mA/cm2) are listed in Table 2. The 
hydrogen diffusivity of annealed interstitial free steel is 
lower than those of pure iron [4 – 6]. It is due to the 
hydrogen trap and causing titanium hydride formation 
matrix. The data also clearly show a decreased in Deff 
but an increased in J ∞ L as cold-rolled percentage 
increased for annealed specimens. The value of Deff is 
decreased with increasing cold work, is due to the 
more hydrogen trapping site resulting from 
dislocations and    deformation- induced micro voids [ 
9-10 ] .Cold work increases the J ∞ L , this effect has 
been explained by short-circuit diffusion paths down 
dis- locations networks as well a s by low energy 
trapping of hydrogen to dislocation [7-8] . 

5.2. Tensile Testing 

Tensile proper ties of hydrogen charged and uncharged 
specimens are listed in Table 3. The tensile data show a 
slight loss in mechanical proper ties with a 5-day 
hydrogen charging for all cold-rolled specimens, but 
slight improvement for annealed specimen. For the un 
charged specimen s, it is mainly simple ductile 
fracture, even the 80% cold- rolled specimen as show n 
in Fig. 2, while the factor graph shows a trangronular 
cleavage effect with a partial ductile fracture surface 
for a 5-day hydrogen charged. This results can be 
explained as more hydrogen trapping site in cold 
worked specimen with higher dislocation density. The 
hydrogen precharged annealed speci- means show 
slight improvement in strength and elongation can be 
explained as the tiny titanium hydride formation in the 
matrix, providing the easy glide of dislocation, and the 
precipitates also enhancing strength. 

6. EXPERIMENTAL SETUP AND FLOW 

DIAGRAM 
 

Fig. 2 shows the flow diagram. The energy aware 
(encc) compiler [5] generates the code for the ARM7 
core. It is a research compiler used for exploring the 
design and new optimization techniques. The input to 
this compiler is an application benchmark written in C. 
As a post pass option, encc uses a special packing 
algorithm, known as the knapsack algorithm [4], for 
assigning code and data blocks to the scratch pad 
memory.  
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Fig. 2 Experimental flow diagram 
 

This algorithm identifies the frequently referred data 
and instruction blocks and maps to the scratch pad 
memory address space. The cost of additional jumps 
introduced due to mapping consecutive blocks to 
scratch pad and main memory is accounted for by the 
algorithm. The result is that blocks of instructions and 
data which are frequently accessed, and axe likely to 
generate maximum energy savings, axe assigned to the 
scratch pad. The output of the compiler is a binary 
ARM code which can be simulated by the ARMulator 
to produce a trace file. For on-chip cache 
configuration, the ARMulator accepts thecache size as 
parameter and generates the performance as the 
number of cycles.  

7. RESULT AND DISCUSSION 

To demonstrate the merits of using on-chip scratch pad 
memory and on-chip caches, we have conducted a 
series of experiments for both of these configurations. 
The trace analysis after the compilation phase. We use 
a 2-way set associative cache configuration for 
comparison. This area represents dynamic number of 
transistors. These consume the area from the cache and 
scratch pad organization, and obtain the results. The 
comparison of area of the cache and scratch pad 
memory for varying sizes. We find that on an average 
the area occupied by the scratch pad is less than the 
cache memory by 35%.Thus; we take the main 
memory energy, along with the on-chip memory 
energy consumption into account. The energy 
consumed for bi-quad, matrix-melt and quick-sort, 
which are examples for both cache and scratch pad. In 
all the cases we have analyzed, that scratch pad 
consumes less energy for the same size of cache, 
except for quick-sort with cache size of 256 bytes. On 
an average, we found energy consumption to be 
reduced by 42% using scratch pad memory. 

8. CONCLUSION 

In this paper, we have presented an approach for 
selection of on-chip memory configurations. The paper 
presents a comprehensive methodology for computing 
area, energy and performance for various sizes of 
cache and scratch pad memories. Results indicate that, 

scratch-pad based compile time memory outperform 
cache-based run-time memory on almost all counts. 
We observe that the area-time product (AT) can be 
reduced by 47% (average) by replacing cache by the 
scratch pad memory. We found that, for most 
applications and memory configurations, the total 
energy consumption of scratch pad based memory 
systems is less than that of cache-based systems. The 
average reduction was 42% in the application 
considered which better compare than other systems. 
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