
International Journal of Engineering, Pure and Applied Sciences,
Vol. 1, No. 1, 2016

1

Embedded Systems Dilemma of Chip Memory
Diversity by Scratchpad Memory for Cache On-chip

Memory

Ravi Kumar Sharma
Research Scholar, Department of Computer Application, Surya World University, Rajpura, India

Email: ravirasotra@yahoo.com

Abstract: -The aim of this paper is the problem of chip memory selection for computationally intensive
applications by proposing scratch pad memory as an alternative to cache. Area and energy for different scratch
pad and cache size are computed using CACTI tools while performance was evaluated using the trace results. In
this paper, an algorithm integrated into a compiler is presented which analyses the application and selects
program and data parts which are placed into the scratchpad. Comparisons against a cache solution show
remarkable advantages between 12% and 43% in energy consumption for designs of the same memory size.

Key Words-Scratchpad Memory, Cache Memory, CACTI, Compiler, Memory.

1. INTRODUCTION

The salient feature of portable devices is light
weight and low power consumption. Applications in
multimedia, video processing, speech
processing[1], DSP applications and wireless
communication require efficient memory design
since on chip memory occupies more than 50% of
the total chip area [2]. This will typically reduce
the energy consumption of the memory unit,
because less area implies reduction in the total
switched capacitance. On chip caches using
static RAM consume power in the range of 25%
to 45% of the total chip power [3]. Recently,
interest has been focused on having on chip scratch
pad memory to reduce the power and improve
performance. On the other hand, they can replace
caches only if they are supported by an effective
compiler. Current embedded processors
particularly in the area of multimedia applications
and graphiccontrollers have on-chip scratch pad
memories. In cache memory systems, the mapping
of program elements is done during runtime,
whereas in scratch pad memory systems this is
done either by the user or automatically by the
compiler using suitable algorithm. Although
prior studies into scratch pad memory behavior
for embedded systems have been conducted, the
impact on area has not been addressed. This
paper compares cache/scratch pad area models
along with their energy models. Specifically we
address the following issues. To support
comparison of memory systems we generate area
models for different cache and scratchpad memory.
Further, energy consumed per access for cache
and scratchpad is computed for different sizes of
cache and scratchpad. We develop a systematic
framework to evaluate the area-performance
tradeoff of cache/scratch pad based systems.

Experimental environment requires the use of a
packing algorithm (which is a compiler support)
to map the elements onto the scratchpad memory.
Finally, we report the performance and energy
consumption for different cache and scratchpad
sizes, for the various applications. We include the
main memory energy consumption to study the
complete system energy requirements. The rest of
the paper is organized as follows. In section Awe
explain the scratch pad memory area and energy
models. In section B, we present cache memory
used in our work. Section C describes the
methodology and the experimental setup and
section VI contains the results. In section VII we
conclude and also specify the future work.

Fig 1: Block Diagram of Embedded Processor
Application

2. SCRACTH AND MEMORY
Scratch pad is a memory array with the decoding
and the column circuitry logic. This model is

International Journal of Engineering, Pure and Applied Sciences,
Vol. 1, No. 1, 2016

2

designed keeping in view that the memory objects
axe mapped to the scratch pad in the last stage of
the compiler. The assumption here is that the
scratch pad memory occupies one distinct part of
the memory address space with the rest of the
space occupied by main memory. Thus, we need
not check for the availability of the
data/instruction in the scratch pad. It reduces the
comparator and the signal miss/hit acknowledging
circuitry. This contributes to the energy as well as
area reduction. The cell has one R/W port. Each
cell has two bit-lines, bit and bit bar, and one
word-line. the area of the scratch pad is the sum
of the area occupied by the decoder, data array
and the column circuit. The scratch pad memory
energy consumption can be estimated from the
energy consumption of its components i.e.decoder
and memory columns.Energy in the memory array
consists of the energy consumed in the sense
amplifiers, column multiplexers, the output driver
circuitry, and the memory cells due to the word
line, pre-charge circuit and the bit line circuitry.
The major energy consumption is due to the
memory array unit. The procedure followed in the
CACTI tool to estimate the energy consumption is
to first compute the capacitances for each unit.
Then, energy is estimated. As an example we only
describe the energy computation for the memory
array. Similar analysis is performed for the
decoder circuitry also, taking into account the
various switching activity at the inputs of each
stage.In the preparation for an access, bit-lines are
pre-charged and during actual read/write, one side
of the bit lines are pulled down. Energy is
therefore dissipated in the bit-lines due to pre-
charging and the read/write access. When the
scratch pad memory is accessed, the address
decoder first decodes the address bits to find the
desired row. The transition in the address bits
causes the charging and discharging of
capacitances in the decoder path. This brings
about energy dissipation in the decoder path. The
transition in the last stage, which is the word-line
driver stage triggers the switching in the word-
line. Regardless of how many address bits change,
only two word-lines among all will be switched.
One will be logic 0 and the other will be logic 1.

3. CACHE MEMORY

Cache memory is random access memory that a
computer microprocessor can access more quickly than
it can access regular RAM[6].As the microprocessor
processes data, it looks first in the cache memory and if
it finds the data there (from a previous reading of data),
it does not have to do the more time-consuming
reading of data from larger memory. Cache memory is
sometimes described in levels of closeness and
accessibility to the microprocessor. In addition to

cache memory, one can think of RAM itself as a cache
of memory for hard disk storage since all of RAM's
contents come from the hard disk initially when you
turn your computer on and load the operating system
(you are loading it into RAM) and later as you start
new applications and access new data. RAM can also
contain a special area called a disk cache that contains
the data most recently read in from the hard disk.
Caches are mainly used to exploit the temporal and
spatial locality of memory accesses. Area model that
we use in our work is based on the transistor count in
the circuitry. All transistor counts are computed from
the designs of circuits.

4. SCRACTHPAD MEMORY PRAPHERNALIA
ANDS METHODS

There are different type’s scratchpad memory
paraphernalia and method like static memory and
dynamic memory. Static memory location don’s
change at runtime and dynamic memory locations
change at runtime. Find a technique for efficiently
exploiting on-chip SPM by partitioning the
application’s scalar and array variables into off-chip
DRAM and on-chip SPM Minimize the total execution
time of the application. The method is to Use profiling
to estimate reuse, Copy variables in to SRAM when
reused, Cost model ensures that benefit exceeds cost,
Transfers data between the on chip and off chip
memory under compiler supervision, Compiler-known
data allocation at each point in the code.

4.1. Scratch pad memory accesses
From the trace file, it is possible to do the performance
estimation. As the scratch pad is assumed to use part of
the total memory address space, from the address
values obtained by the trace analyzer, the access is
classified as going to scratch pad or memory and an
appropriate latency or check points are added to the
overall program delay. One cycle is assumed if it is a
scratch pad read or writes access. If it is a main
memory 16 bit access then we take it as one cycle plus
1 wait state (refer to Table 1). If it is a main memory
32 bit access then, we consider it as one cycle plus 3
wait states. The total time in number of clock cycles
taken is used to conclude the performance.

4.2. Cache memory accesses
From the trace file it is possible and easy to obtain the
number cache read hits, read misses, write hits and
write misses.

Table 1: Memory access cycles
Access Number of Cycles

Cache Using Table 2

Scratch Pad 1 Cycle

Main Memory 16 bit 1 Cycle + 1 wait state

Main Memory 32 bit 1 Cycle +3 wait state

International Journal of Engineering, Pure and Applied Sciences,
Vol. 1, No. 1, 2016

3

From this data, we figure out the number of accesses to
cache based on Table 2, where the number of cycles
required for each type of access is given in Table 1.
The cache is a write through cache. There are four
cases of cache access that we consider in our model.
1) Cache read hit: When the CPU requires some

data, the tag array of the cache is accessed. If there
is a cache read hit, then data is read from the
cache. No write to the cache is done, and main
memory is not accessed for a read or writes.

2) Cache read miss: When there is a cache read miss,
it implies that the data is not in the cache, and the
Line has to be brought from main memory to
cache. In this case we have a cache read operation,
followed by L words to be written in the cache,
where L denotes the line size. Hence, there will be
a main memory read event of size L with no main
memory write.

3) Cache write hit: If there is a cache write hit, we
have a cache write, followed by a main memory
write.

4) Cache write miss: In case of a cache write miss, a
cache tag read (to establish the miss) is followed
by the main memory writes. There is no cache
update in this case.

Table 2: Cache memory interaction model

Access

Type
Caread Cawrite Mmread Mmwrite

Read hit 1 0 0 0

Read miss 1 L L 0

Write hit 0 1 0 1

Write miss 1 0 0 1

4.3. METHODOLOGY

Clock cycle estimation is based on the ARMulator
trace output for cache or scratch pad memory. This is
understood to directly focus the performance which
means the larger the number of clock cycles the lower
the performance. The theory that the change in the on-
chip memory configuration (cache/scratch pad memory
and its size) does not change the clock period. This
hypothesis though restrictive doesn’t affect our results.
Because we always compare the same size cache with
scratch pad memory and the delay of cache
implemented with the same technology will always be
higher as compare to others. Thus, the performance
improvement predicted for scratch pad can only
increase if both effect the clock period. The
identification and assignment of critical data structures
to scratch pad was based on a packing algorithm.

5. RESULTS AND DISCCUSION

5.1. Permeation Test

The diffusivity and the permeation rate of the
interstitial free steel at 300 C with a constant charging
current density (10 mA/cm2) are listed in Table 2. The
hydrogen diffusivity of annealed interstitial free steel is
lower than those of pure iron [4 – 6]. It is due to the
hydrogen trap and causing titanium hydride formation
matrix. The data also clearly show a decreased in Deff
but an increased in J ∞ L as cold-rolled percentage
increased for annealed specimens. The value of Deff is
decreased with increasing cold work, is due to the
more hydrogen trapping site resulting from
dislocations and deformation- induced micro voids [
9-10] .Cold work increases the J ∞ L , this effect has
been explained by short-circuit diffusion paths down
dis- locations networks as well a s by low energy
trapping of hydrogen to dislocation [7-8] .

5.2. Tensile Testing

Tensile proper ties of hydrogen charged and uncharged
specimens are listed in Table 3. The tensile data show a
slight loss in mechanical proper ties with a 5-day
hydrogen charging for all cold-rolled specimens, but
slight improvement for annealed specimen. For the un
charged specimen s, it is mainly simple ductile
fracture, even the 80% cold- rolled specimen as show n
in Fig. 2, while the factor graph shows a trangronular
cleavage effect with a partial ductile fracture surface
for a 5-day hydrogen charged. This results can be
explained as more hydrogen trapping site in cold
worked specimen with higher dislocation density. The
hydrogen precharged annealed speci- means show
slight improvement in strength and elongation can be
explained as the tiny titanium hydride formation in the
matrix, providing the easy glide of dislocation, and the
precipitates also enhancing strength.

6. EXPERIMENTAL SETUP AND FLOW

DIAGRAM

Fig. 2 shows the flow diagram. The energy aware
(encc) compiler [5] generates the code for the ARM7
core. It is a research compiler used for exploring the
design and new optimization techniques. The input to
this compiler is an application benchmark written in C.
As a post pass option, encc uses a special packing
algorithm, known as the knapsack algorithm [4], for
assigning code and data blocks to the scratch pad
memory.

International Journal of Engineering, Pure and Applied Sciences,
Vol. 1, No. 1, 2016

4

Fig. 2 Experimental flow diagram

This algorithm identifies the frequently referred data
and instruction blocks and maps to the scratch pad
memory address space. The cost of additional jumps
introduced due to mapping consecutive blocks to
scratch pad and main memory is accounted for by the
algorithm. The result is that blocks of instructions and
data which are frequently accessed, and axe likely to
generate maximum energy savings, axe assigned to the
scratch pad. The output of the compiler is a binary
ARM code which can be simulated by the ARMulator
to produce a trace file. For on-chip cache
configuration, the ARMulator accepts thecache size as
parameter and generates the performance as the
number of cycles.

7. RESULT AND DISCUSSION

To demonstrate the merits of using on-chip scratch pad
memory and on-chip caches, we have conducted a
series of experiments for both of these configurations.
The trace analysis after the compilation phase. We use
a 2-way set associative cache configuration for
comparison. This area represents dynamic number of
transistors. These consume the area from the cache and
scratch pad organization, and obtain the results. The
comparison of area of the cache and scratch pad
memory for varying sizes. We find that on an average
the area occupied by the scratch pad is less than the
cache memory by 35%.Thus; we take the main
memory energy, along with the on-chip memory
energy consumption into account. The energy
consumed for bi-quad, matrix-melt and quick-sort,
which are examples for both cache and scratch pad. In
all the cases we have analyzed, that scratch pad
consumes less energy for the same size of cache,
except for quick-sort with cache size of 256 bytes. On
an average, we found energy consumption to be
reduced by 42% using scratch pad memory.

8. CONCLUSION

In this paper, we have presented an approach for
selection of on-chip memory configurations. The paper
presents a comprehensive methodology for computing
area, energy and performance for various sizes of
cache and scratch pad memories. Results indicate that,

scratch-pad based compile time memory outperform
cache-based run-time memory on almost all counts.
We observe that the area-time product (AT) can be
reduced by 47% (average) by replacing cache by the
scratch pad memory. We found that, for most
applications and memory configurations, the total
energy consumption of scratch pad based memory
systems is less than that of cache-based systems. The
average reduction was 42% in the application
considered which better compare than other systems.

REFERENCES

[1] Rajeshwari Banakar, Stefan Steinke, Bo_Sik Lee,
M. Balakrishnan, Peter Marwedel, Scratchpad
Memory: A Design Alternative for Cache Onchip
memory in Embedded Systems

[2] Doris Keitel-Sculz and Norbert Wehn., Embedded

DRAM Development Technology, Physical

Design, and Application Issues, IEEE -Design and

Test of Computers, Volume 18 Number 3, Page 7

to15, May-June 2001.

[3] M.T. Milan, D. Spinelli, W.W. Bose Filho, Int. J.
Fatigue 23 (2001) 129.

[4] T.Y. Zhang, Y.P. Zhang, Acta Mater. 46 (1998)
5023.

[5] D.L. Johnson, J.K. Wu, J. Mater. Energy Syst. 8
(1987) 402`

[6] R.D. McCright, “Stress Corrosion Cracking and
Hydrogen Em-brittlement of Iron Base Alloys”,
NACE, Houston, TX, 1977, p. 306

[7] http://searchstorage.techtarget.com/definition/cach
e-memory

[8] Http://citeseerx.ist.psu.edu/viewdoc/summary?doi
=10.1.1.17.34 46

