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Abstract-In this paper, we prove unique fixed point theorem for generalized asymptotically non-expansive 
mappings on q-hyperconvex ଴ܶ −quasi-metric space. Our result unifies, generalize and complement the 
comparable results from the current literature. 
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1. INTRODUCTION 

In 2012 Kunzi and Otafudu [15] have introduced and 
studied the concept of q-hyperconvex ଴ܶ −quasi-
metric space and also present some fixed point 
theorems for nonexpansive self-maps on a bounded q-
hyperconvex quasi- pseudo-metric space. 
Hyperconvexity was introduced by Aronszajn and 
Panitchpakdi [1] in 1956. Later, in 1979, 
independently Sine [19] and Soardi [20] proved that a 
bounded hyperconvex metric space has a fixed point 
property for nonexpansive maps and very 
fundamental properties about hyperconvex spaces as 
well as the structure of the fixed point set of 
nonexpansive mappings were shown by Baillon in [2].  
Kirk [14] established the fixed point theory for 
nonexpansive mappings in hyperconvex metric 
spaces. Khamsi et al. [10] studied fixed points of 
commuting nonexpansive maps in hyperconvex 
metric spaces. Since then many interesting works 
related to a nonexpansive maps have appeared for q-
hyperconvex ଴ܶ −quasi- metric spaces, see the 
reference [3,8,9,15]. In this paper, we continue our 
studies of this concept by generalizing the above 
result of Khamsi [13] and shown that an 
asymptotically nonexpansive mapping on a q-
hyperconvex ଴ܶ −quasi-metric space has a unique 
fixed points.  
 
2. PRELIMINARIES 

For the comfort of the peruser and with a specific end 
goal to settle our wording we review the 
accompanying ideas. 
Definition ૛. ૚: [૚૞]  Let ܼ be a set and let ݀: ܼ →
ܼ → [0, ∞) be a function mapping into the set [0, ∞) 

 
 
of the nonnegative reals. Then ݀ is called a quasi-
pseudometric on ܼ if  
,ݖ)݀(ܽ) (ݖ = 0 for all ݖ ∈ ܼ. 

,ݔ)݀ (ܾ) (ݖ ≤ ,ݔ)݀ (ݕ + ,ݕ)݀ ,ݔ ∀ (ݖ ,ݕ ݖ ∈ ܺ. 
We shall say that ݀ is a ଴ܶ −quasi-metric provided 
that ݀ also satisfies the following condition: For each 
,ݔ ݕ ∈ ܺ, 
,ݔ)݀ (ݕ = 0 = ,ݕ)݀ ݔ implies that (ݔ =  .ݕ
 
Remark ૛. ૛: [૚૜, ૚૞] 

 Let ݀ be a quasi-pseudometric on ܺ, then 
the map ݀ିଵ(ݔ, (ݕ = ,ݕ)݀  whenever (ݔ
,ݔ ݕ ∈ ܺ is also a quasi-pseudometric on ܺ, 
called the conjugate of ݀. 

 It is easy to verify that the function ݀௦ 
defined by ݀௦ = ݀⋁݀ିଵ, i.e.  
݀௦(ݔ, (ݕ = max{݀(ݔ, ,(ݕ ,ݕ)݀  {(ݔ

Defines a metric on ܺ whenever ݀ is a  ଴ܶ-quasi-
pseudometric.  
 
Definition ૛. ૜. [૚૞] Let (ܺ, ݀) be a quasi-
pseudometric space. For each ݔ ∈ ܺ and   ߳ > 0, 

,ݔ)ௗܤ ߳) = ݕ} ∈ ܺ ∶ ,ݔ)݀ (ݕ < ߳}. 
Denotes the open ߳ − ܾ݈݈ܽ at ݔ. The collection of all 
“open’’ balls yields a base for a topology ߬(݀). It is 
called the topology induced by ݀ on ܺ. Similarly, we 
set for each ݔ ∈ ܺ and ߳ ≥ 0, 

,ݔ)ௗܥ ߳) = ݕ} ∈ ܺ: ,ݔ)݀ (ݕ ≤ ߳}. 
Denotes the closed ߳ −ball at ݔ. 
In some cases we need to replace [0,∞) by [0,∞] 
(where for a ݀ attaining the value ∞ the triangle 
inequality is interpreted in the obvious way). In such a 
case we might discuss a broadened quasi-pseudo 
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metric. In the accompanying we now and then apply 
ideas from the theory of quasi-pseudo metrics to 
broadened quasi-pseudo metrics (without changing 
the usual definitions of these concepts).  
 
Definition ૛. ૝. [5] The q-hyperconvex space (ܺ, ݀) 
is said to be bicomplete if the metric space (ܺ, ݀௦) is 
complete 
 
Example ૛. ૞.  Let ܺ = [0; ∞). Define for each 
,ݔ ݕ ∈ ܺ, ,ݔ)݊ (ݕ = ݔ if ݔ > ,ݔ)݊ and ,ݕ (ݕ = 0 if 
ݔ ≤ ,ܺ) It is not difficult to check that .ݕ ݊) is a ଴ܶ-
quasi-pseudometric space.  
 headings should be typeset in boldface with the 
words uppercase. 

3. Q-HYPERCONVEXITY 

In this section, we recall some important results and 
definitions on q-hyperconvex metric space. Some 
recent further work about q-hyperconvexity can be 
found in [9,15,17]. 
 
Definition ૜. ૚: [૚૞]A quasi-pseudo-metric 
space(ܺ, ݀)is called q-hyperconvex provided that for 
each family (ݔ௜)௜∈ூ of points in ܺ and families of 
nonnegative real numbers (ݎ௜)௜∈ூ and (ݏ௜)௜∈ூ the 
following condition holds:  
if ݀൫ݔ௜ , ௝൯ݔ ≤ ௜ݎ + ,݅ ௝ wheneverݏ ݆ ∈   then ,ܫ
 

ሩ(
௜∈ூ

௜ݔ)ௗܥ , (௜ݎ ∩ ௜ݔ)ௗషభܥ , ((௜ݏ  ≠ ∅. 
 
Remark ૜. ૛: [૚૝] If ݀ and ݀ିଵ are identical and 
௜ݎ = ݅ ௜ forݏ ∈ ௜ݖ)ௗܥin definition 3.1, then ൫ ܫ ,  ௜)൯ andݎ
൫ܥௗషభ(ݖ௜ , -௜)൯ coincide and then we recover the wellݏ
known definition of hyper convexity due to Aronszajn 
and Panitchpakdi [1]. 
Corollary ૜. ૝. [૚૞] Each metric space (ܼ, ݉) that is 
q-hyperconvex (q-hypercomplete) is hyperconvex 
(hypercomplete). 
Corollary ૜. ૞. [૚ૠ] Each q-hyperconvex ଴ܶ −quasi-
metric space (ܼ, ݀) is bi-complete. 
Example ૜. ૟: [૚૞] Let ℝ × ℝ of the real valued map 
equipped with the ଴ܶ-quasi-metric ݀(ݔ, (ݕ =
max{ݔ − ,ݕ 0} whenever ݔ, ݕ ∈ ℝ. Then (ℝ, ݀) is a q-
hyperconvex. 
Example ૜. ૠ: [૚૝]Consider the product of (ℝ,  (ݑ
and (ℝ, -௧), that is, ℝଶ equipped with the qݑ
hyperconvexity ܦ൫(ߙ, ,(ߚ ,ᇱߙ) ᇱ)൯ߚ = ߙ) − (ᇱߙ ∨
ᇱߚ) − ,ߙ) whenever(ߚ ,(ߚ ,ᇱߙ) (ᇱߚ  ∈ ℝଶ. Then the 
diagonal {(ߙ, :(ߙ ߙ ∈ ℝ} in this product q-
hyperconvex is isometric to (ℝ,  .(௦ݑ

Corollary ૜. ૢ: [૚૜] The quasi-pseudo-metric 
subspace [0, ∞) of (ℝ,  is q-hyperconvex (ݑ
 
 
Definition ૜. ૚૙.Let (ܺ, ݀) be a ଴ܶ −quasi-metric 
space, we say that a mapping ܶ: ܺ → ܺ has unique 
fixed points if there exists 0 ≤ ܭ < ଵ

ଷ
 such that for all 

,ݔ ݕ ∈ ܺ, the following inquality holds:  
,ݔܶ)݀ (ݕܶ ≤ ,ݔܶ)݀}ܭ (ݔ + ,ݕ)݀ (ݕܶ + ,ݔܶ)݀  .{(ݕ

 

4. MAIN RESULT 

Theorem ૝. ૚. Let (ܺ, ݀) be a bounded hyperconvex 
metric space and ܶ: ܺ → ܺ be asymptotically 
nonexpansive mapping. Then ܶ has a unique fixed 
point.  
The following result generalizes the above theorem to 
the setting of q-hyperconvex ଴ܶ −quasi-metric spaces. 
 
Theorem ૝. ૛.Let (ܺ, ݀) be a bounded q-hyperconvex 

଴ܶ −quasi-metric space and let ܶ: ܺ → ܺ be 
generalized asymptotically nonexpansive mapping. 
Then ܶ has unique fixed points. 
 
Proof. Since ܶ: ܺ → ܺ is generalized asymptotically 
nonexpansive. Then there exist 0 ≤ ܭ < ଵ

ଷ
 such that 

for all ݔ, ݕ ∈ ܺ, then following inequality holds:  
,ݔܶ)݀ (ݕܶ ≤ ,ݔܶ)݀}ܭ (ݔ + ,ݕ)݀ (ݕܶ + ,ݔܶ)݀  {(ݕ

We shall first show that ܶ: (ܺ, ݀௦) → (ܺ, ݀௦) is a 
generalized asymptotically nonexpansive. Since for 
any ݔ, ݕ ∈ ܺ, we have 

݀ିଵ(ܶݔ, (ݕܶ = ݀ 
≤ ,ݕܶ)݀}ܭ (ݕ + ,ݔ)݀ (ݔܶ + ,ݕ)݀  {(ݔܶ

≤ ,ݕ)ଵି݀}ܭ (ݕܶ + ݀ିଵ(ܶݔ, (ݔ + ݀ିଵ(ܶݔ,  {(ݕ
݀ିଵ(ܶݔ, (ݕܶ ≤ ,ݔܶ)ଵି݀}ܭ (ݔ + ݀ିଵ(ݕ, (ݕܶ

+ ݀ିଵ(ܶݔ,  {(ݕ
And we see that ܶ: (ܺ, ݀ିଵ) → (ܺ, ݀ିଵ) is a 
generalized asymptotically nonexpansive  
Therefore,  

,ݔܶ)݀ (ݕܶ ≤ ,ݔܶ)݀}ܭ (ݔ + ,ݕ)݀ (ݕܶ + ,ݔܶ)݀ {(ݕ
≤ ,ݔ)௦݀}ܭ (ݔܶ + ݀௦(ݕ, (ݕܶ
+ ݀௦(ܶݔ,  {(ݕ

And  
݀ିଵ(ܶݔ, (ݕܶ ≤ ,ݕ)ଵି݀}ܭ (ݕܶ + ݀ିଵ(ܶݔ, (ݔ

+ ݀ିଵ(ܶݔ,  {(ݕ
≤ ,ݔ)௦݀}ܭ (ݔܶ + ݀௦(ݕ, (ݕܶ + ݀௦(ܶݔ,  {(ݕ

For all ݔ, ݕ ∈ ܺ. Hence  
݀௦(ܶݔ, (ݕܶ ≤ ,ݔ)௦݀}ܭ (ݔܶ + ݀௦(ݕ, (ݕܶ + ݀௦(ܶݔ,  {(ݕ
For all ݔ, ݕ ∈ ܺ and so, ܶ: (ܺ, ݀௦) → (ܺ, ݀௦) is a 
generalized asymptotically nonexpansive. 
 
By assumption,(ܺ, ݀௦) is bounded q-hyperconvex. 
Therefore, by Theorem 4.1, T has a unique fixed 
point.  
Corollary ૝. ૜. Let (ܺ, ݀) be a q-hyperconvex 

଴ܶ −quasi-metric space and ܶ: ܺ → ܺ be a 
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nonexpansive mappings. Then ܶ has a unique fixed 
point. 
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