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Abstract-Homomorphic encryption addresses the problem of security breach of trusted parties by conversion to 
ciphers which maintain the arithmetic relations between them as in the message space. Any private computation 
outsourcing thus gets more secured as the vendor can compute on encrypted values without knowing the meaning of 
data. Here we present the encryption scheme for genome analysis for deriving medical results. We have used the 
Paillier’s algorithm which is homomorphic under addition and is sufficient for matching and aggregating events. We 
show some types of searches performed for various tests on genome sequence and will generalize the search 
function so that new search patterns can be accommodated just by changing parameters to the unified function. 
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1. INTRODUCTION  

 1.1. Homomorphic Encryption  

 Homomorphic encryption is a cryptographic scheme 
that allows mathematical operations on data to be 
carried out on cipher text, instead of on the actual data 
itself. The cipher text is an encrypted version of the 
input data (also called plain text). It is operated on and 
then decrypted to obtain the desired output. The critical 
property of homomorphic encryption is that the same 
output should be obtained from decrypted the operated 
cipher text as from simply operating on the initial plain 
text.  
The process begins with some plain text message, m. 
The goal is to perform some function f   on it. It would 
be safer to encrypt the message using enc   before 
performing any functions on it. So the message is 
encrypted to some cipher text 163726.  
Then, it is evaluated, or transformed, into another value 
using some other function, f=x+127, for example. The 
output, 163853, is another completely encrypted 
message. This message can then be decrypted. 

 
Fig. 1.  Homomorphism and encryption 

 

 
 
Homomorphic encryption is of 3 types:  
1. Partially homomorphic encryption  
2. Somewhat homomorphic encryption  
3. Fully homomorphic encryption  

1.2. Paillier Algorithm  

1. Key generation: Let p and q be prime numbers 
where p < q and p does not divide q − 1. For the 
paillier encryption scheme, we set the public key 
pk to n where n = pq and private key pr to (λ, n) 
where λ is the lowest common multiplier of p − 1, 
q − 1.  

2. Encryption with the public key: Given n, the 
message m, and a random number r from 1 to n − 
1, encryption of the message m is calculated as 
follows:  

. 
 
3. Decryption with the private key: Given n, the 

cipher text c = Epk (m), we calculate the Dpr (c) as 
follows: m = [((cλ mod n2 ) − 1)/n]λ−1 mod n 
where λ−1 is the inverse of λ in modulo n. 

4. Adding two ciphertexts (+h ): Given the encryption 
of m1 and m2 , Epk (m1 ) and Epk (m2 ), we 
calculate the Epk (m1 + m2 ) as follows:  

    
 
 
 
 
 

Epk (m) = (1 + n)mrn mod n2 

      Epk (m1 )Epk (m2 ) mod n2 = ((1+n)m1 
rn

1 ) ((1 + n)m2 rn2 ) mod n2 
      =((1 + n)m1 +m2 (r1r2 )

n) mod n2 
      = Epk (m1 + m2 ). 
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Note, due to the modular operation, cipher text addition 
yields Epk (m1 + m2 mod n).  
5. Multiplying a ciphertext with a constant (×h): Given a 
constant k and the encryption of m1, Epk (m1), we 
calculate k ×h Epk (m1) as follows:  
 
 
 

1.3 Human Genome 

It is the DNA sequence containing the nucleotides 
represented by alphabets (A,T,G,C). There are 22 
chromosome pairs (44 individual chromosomes each 
having 2 strands) and 2 sex chromosomes (XX for 
female, XY for male). The DNA sequence is 
representative of various traits of an individual 
represented by genes. Also various anomalies in this 
sequence is indicative of a disease or reveal 
susceptibility to a disease. The DNA mapping was fully 
studied by the ‘Human Genome Project’. 

2. SOME APPLICATIONS OF MEDICAL      
ANALYSIS FROM GENOME SEQUENCE 
1. Diseases arising from triplet repeat expansion: 

Occurrence of a triplet pattern above the normal 
limit. Example: Huntington disease –occurrence of 
pattern ‘CAG’ more than 35 times is indicative of 
the disease. 

2. Organ transplant: Checking compatibility of patient 
and donor by gene matching in particular regions. 
HLA is a gene which distinguishes self-cells from 
foreign cells, responsible for tissue rejection. 
Genes for HLA should be as similar as possible. 6 
HLA genes need to be compared at location 
6p21.33/32. 

3.  DiGeorge syndrome: Deletion in 22q11.21 
4. Sickle cell anemia: If both parents have ‘CAC’ 

pattern instead of ‘CTC’ pattern in one of the 
strand in 11p15.5, then the child has 25% chance of 
having ‘CAC’ in both strands. Sickle blood cells 
have less oxygen carrying capacity and the patient 
have much reduced lifespan. 

5. Chronic Myelogenouslukemia: Search 
chromosome 22 for shortening of length. Look for 
‘BCR-ABL’ gene which is ontogeny. 

3.  METHEDOLOGY 
1. Genome sequence of 46 chromosomes against a 

person is stored in DB. 
2.  Each sequence is a multiple of 3 because 

functional parts of DNA are always looked up as 
combination of 3 nucleotides. 

3. The constituent letters (A,T,G,C) can be given 
codes as (1,2,3,4) respectively. Thus a triplet code 
is 444 at max. 

4. Such 3 digit numbers can be separately encrypted 
and concatenated. 

5. String matching can be done by the homomorphic 
subtraction operation. A match of search triplet 
will yield 0s on decrypting the result cipher text. 

 
4. COMMON SEARCH ALGORITHM 
Writing a function for each disease lookup will be time 
and space consuming. New important tests can come up 
anytime and we don’t want site maintenance for each of 
such events. Therefore we intend on implementing a 
single unified function which can be modified for any 
special search. Thus, users will have to pass only the 
search parameters to invoke the function at server. 
Generalising the search pattern from the above cases we 
can include the following parameters:               

1. Search at specific locations or the entire genome 
sequence. 

2. Enable count length option for the given search 
area to check for increased or decreased length. 

3. Option to search both chromosomes of a given 
number. Usually they are same but can differ 
slightly due to modifications. 

 
5.  FAST SEARCH ARCHITECTURE: 
Abiding by semantic security principle, we should 
ensure that the search request shouldn’t give any 
information about the search query such as which 
results from the database were accessed corresponding 
to a given search term. So, in worst case, all records of 
the database have to be processed. We therefore 
propose a 3-server architecture to speed up the process. 
The search request will be composed of 3 parts: patient 
id, location, search term. 
 

Patient id Location(s) Search term(s) 

 
The 3 server architecture is as follows. We assume that 
the servers are independently managed i.e. they do not 
share the private keys among them. Server 1 contain the 
patient ids, Server 2 is only processing server which 
decrypts information from server 1, Server 3 contains 
the genome data of patients and is in one to one relation 
with server 1’s patient id table record.  
Paillier is a public-key cryptosystem. Encryption is 
done at client: Patient’s id with public key whose 
private key is stored on server 2 so that it reveals the 
entry to be processed, location with public key whose 
private key is stored on server 3 so that the column to 
be processed is revealed, search term with key whose 

k ×h Epk (m1) = Epk (m1)k 
mod n2 = ((1 + n)m1 rn1 )k 
mod n2= (1+n)km1 r1

kn modn2 
= Epk (km1 ). 
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private key is with the client itself so that client data is 
never exposed. Server 3 can send the processed string 
to client which will decrypt it and infer from the 
occurrences of 0’s. 

Fig. 2. Three server architecture

6. CONCLUSION:  
The paillier encryption scheme is efficient for 
searching. We only have to understand the fact that 
decrypting the product of 2 ciphers 
with little modification (multiplicative inverse of 2
term) gives difference. Decrypting the processed string 
and searching for 0’s will give the occurrences of 
pattern match. 
However, semantic security is an issue and to protect it 
one might have to search the entire table for a single 
query. Assuming a multi-level server architecture and 
breaking the algorithm to each of them such that the 
part assigned can only be solved by them, we can still 
maintain semantic security to a large ex
that the servers never share their private keys. A 
malicious user trying to make meaning of the search 
query has to know all the private keys distributed in the 
system. Also, it improves the execution time as we can 
now directly go to the search location of genome string 
without worrying about violation of semantic security.
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