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Abstract- In this paper, the estimation problem for the unknown parameters of the log- logistic 

distribution based on progressive type-II censored data with random removals is considered, where the number 
of units removed at each failure time follows a binomial distribution. We derive the modified maximum 
likelihood estimators using the approach of Tiku and Suresh [16] and Suresh [14], as the likelihood equations 
are intractable of the unknown parameters. Also their asymptotic variance-covariance matrix of the estimates is 
obtained. Further, reliability characteristics of distribution, confidence intervals and coverage probabilities of 
estimators are studied. 
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1. INTRODUCTION 

In probability and statistic the log-logistic 
distribution, which is also known as Fisk distribution 
in economics is a continuous probability distribution 
for a non-negative random variables.  It has gained 
special attention due to the importance of using it in 
practical situation. It is used in survival analysis as a 
parametric model for events whose rate increases 
initially and decreases later, for example mortality 
from cancer following diagnosis or treatment. It has 
also been used in hydrology to model stream flow and 
precipitation (Rowinski et al. [8]), and in economics 
as a simple model of the distribution of wealth or 
income. It is also used to concentration-response 
studies (Straetemans et al. [13]) in oncology. 
Censored sampling arises in a life testing experiment 
whenever the experimenter does not observe the 
failure times of all items placed on a life test. There 
are many cases in life testing experiments in which 
units are lost or removed from the test before failure.  
In medical or industrial applications, researchers have 
to treat the censored data because they usually do not 
have sufficient time to observe the lifetime of all 
subjects in the study.  
A type II censored sample is one for which � 
smallest observations in a sample of � items are 
observed. A generalization of type II censoring is a 
progressive type II censoring. Under this scheme, � 
units of the same kind are placed on test at time zero, 
and � failures are observed. When the first failure is 
observed, a number �� of surviving units are randomly 
withdrawn from the test; at the second failure time, �� 

surviving units are selected at random and taken out 
of the experiment, and so on.  At the time of the ��� 
failure, the remaining �� = � − �� − �� − ⋯ −���� − � units are removed. Progressive censoring is 
useful in both industrial life testing applications and 
clinical settings; it allows the removal of surviving 
experimental units before the termination of the test. 
Balakrishnan and Aggarwala [2] provided a 
comprehensive reference on the subject of progressive 
censoring and its applications. Balkrishnan et al. [3] 
indicated that such scheme can arise in clinical trials 
where the drop out of patients may be caused by 
migration or by lack of interest. In some reliability 
experiments, an experimenter may decide that it is 
inappropriate or too dangerous to carry on the testing 
on some of the tested units even though these units 
have not failed. In these cases, the pattern of removal 
at each failure is random. We assume that, any test 
unit being dropped out from the life test is 
independent of the others but with the same 
probability p. In such situation, the progressive 
censoring scheme with random removals is required. 
For more information one can also refer Balkrishnan 
and Aggrawala [2]. If �
 = 0 ; � = 1,2, … , � − 1 then 
progressive censoring reduces to Type II censoring 
and if �
 = 0 ; � = 1,2, … , � and � = � then the 
scheme reduces to no censoring i.e. case of complete 
observed sample. Note that, in this 
scheme, ��, ��, … , �� are all pre-fixed.  
Some related works can be found, for example, Tse et 
al. [17] derived the maximum likelihood estimators of 
the parameters of Weibull distribution and their 
asymptotic variance-covariance based on progressive 
type-II censoring with binomial removals. Wu and 
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Chang [18] discussed the estimation problem based 
on exponential progressive type-II censored data with 
binomial removals. Wu [19] obtained the estimators 
of the parameters for Pareto distribution based on 
progressive type-II censoring with uniform removals. 
Shuo and Chun [10] considered the estimation 
problem for the Pareto distribution based on 
progressive Type II censoring with random removals. 
Mubarak [7] discussed maximum likelihood 
estimation for parameter estimation based on the 
Frechet Progressive Type II Censored data with 
binomial removals. Shanubhogue and Jain [9] studied 
minimum variance unbiased estimation in Pareto 
distribution of first kind under progressive Type II 
censored data with binomial removals. Srinivasa Rao 
et al. [12] studied reliability estimation problems for 
the log-logistic distribution from censored samples 
using modified maximum likelihood approach. 
Further, Srinivasa Rao [11] studied estimation of 
system reliability for log-logistic distribution. 

In this paper we discuss the problem of 
estimation of location parameters � and scale 
parameter � of the log-logistic distribution based on 
progressive type II censored data with binomial 
removals. The parameters in log-logistic distribution 
are estimated by classical method of estimation 
namely maximum likelihood estimation (MLE), and 
it is an iterative solution of ML equations. 
Approximations and modifications to the maximum 
likelihood (ML) method of estimation in certain 
distributions to overcome iterative solutions of ML 
equations for the parameters suggested by many 
authors [for examples Tiku and Suresh [16], Suresh 
[14], Asgharzedsh [1] etc]. Tiku and Suresh [16] 
modify maximum likelihood estimators as the 
likelihood equations are intractable of the unknown 
parameters obtained modified maximum likelihood 
(MML) estimates by making linear approximations. 
Further Srinivasa Rao G. et al. [12] obtain MML 
estimate of scale parameter in two parameter log-
logistic distribution. This paper is organized as 
follows. In Section 2, we give model assumption and 
derive the likelihood of log-logistic distribution under 
progressive type II censored data with binomial 
removals. Section 3 deals with estimation of 
parameters by maximum likelihood estimation 
(MLE). In Section 4 we discuss the modified 
maximum likelihood estimation (MMLE). In Section 
5, we discuss the observed Fisher information matrix, 
reliability characteristics, confidence intervals and 
coverage probabilities of estimators. 

2. MODEL ASSUMPTION AND 
LIKELIHOOD FUNCTION 

Suppose that the lifetime � of the unit follows the log-
logistic distribution with parameters �, � and �. The 
probability density function, cumulative distribution 

function, reliability function and hazard rate function 
of the log- logistic distribution are given respectively 
by: 

���� = � !"#$ %�#&
'�(!"#$ %�)*      , � > �, � > 0, � > 0  (2. 1) 

  ,��� = !"#$ %�
�(!"#$ %�  , � > �, � > 0, � > 0     (2.2) 

ℎ��� = .�/�0�/� = � !"#$ %�#&
�(!"#$ %� , � > �, � > 0, � > 0  (2.3) 

where the parameters � , � and � are shape parameter, 
location parameter and scale parameter respectively of 
the distribution. 
Let ���, ���, ���, ���, … , ���, ���, denote the 
progressively Type II censored sample where �� < �� < ⋯ < ��    
 Using the above mentioned assumptions, the 
conditional likelihood function for type-II 
progressively censored model defined by Cohen [4] as 
follows: 23�, �, �; �/� = �5 = 6 ∏ ���
 ; �, �, ��31 −�
8�,��
�59:        (2.4) 
Where 6 = ��� − �� − 1��� − �� − �� − 2� ⋯ �� −∑ �
 − � + 1���
8� � and �
   can be any integer between 
0 and �� − � − �� − �� − ⋯ − �
��� for � =1,2, … , � − 1. Here �= = 0. 
Thus the constant 6 is the number of ways in which 
the � progressively type-II censored ordered statistics 
may select. 
The conditional likelihood function of the log-logistic 
distribution is  23�, �, �; �/� = �5 =
6 ∏ > � !":#$ %�#&

'�(!":#$ %�)*? @ �
�(A"�:�#$ B�C9:�
8�   

                 = 6 DE
FE ∏ > !":#$ %��#&�

'�(!":#$ %�)*GH:?�
8�   (2.5) 

Suppose that the numbers of removed items are 
independent and have the identical probability mass 
function I��� = ��� = !� − ��� % J9&�1 − ��K���9&      ;  �� = 0,1,2, … , � − �                         (2.6) 
and  I��
 = �
/�
�� = �
��, �
�� = �
��, … , �� = ���   =A� − � − ∑ �L
��L8��
 B J9:�1 − J�K���∑ 9M:MN&    (2.7) 

Where, �
 = 0,1,2, … , � − � − ��� + �� + ⋯ +�
���,   � = 1,2, … , � − 1 
Suppose that �
 is independent of  �
, so we can write I3�, J5 = I����� = ���� ����⁄ = ����, ⋯ , ��= ���I����� = ���� ���P⁄= ���P, ⋯ , �� = ��� ∗ ⋯∗ I��� = �� ��⁄ = ��� ∗ I��� = ��� 
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Therefore, I��, J� = �K���!3K���∑ 9:E#&:N& 5! ∏ 9:!E#&:N& J∑ 9:E#&:N& �1 −
J��K���������∑ ���
�9:E#&:N&     (2.8) 
The likelihood function of progressive type-II 
censoring with random removals is defined as 
follows, using the assumptions that �
 is independent 
of �
 for all  �: 23�, �, �, J, �, �5 = 23�, �, �, �/� = �5I�� = ��                   
                                                                             (2.9) 
where 23�, �, �, �/� = �5 is the likelihood function 
for a progressive type II censored scheme defined in 
(2.5). 
Let S
 = /:�TF ,                      � = 1,2, ⋯ , � 

The likelihood function (2.9) is 23�, �, �, J, �, �5 = U�K���!3K���∑ 9:E#&:N& 5! ∏ 9:!E#&:N& !DF%� ∏ V:��#&�
3�(V:�5*GH: J∑ 9:E#&:N& �1 −�
8�J��K���������∑ ���
�9:E#&:N&                        (2.10) 

23�, �, �, J, �, �5 = 6∗ !DF%� ∏ V:��#&�
3�(V:�5*GH: J∑ 9:E#&:N& �1 −�
8�

J��K���������∑ ���
�9:E#&:N&                      (2.11) 

where 6∗ = U�K���!3K���∑ 9:E#&:N& 5! ∏ 9:!E#&:N&  

3. ML ESTIMATION OF PARAMETERS  W, X, Y Z[\ ] 

The log likelihood function of equation (2.11) is given 
by ^ = ^�23�, �, �, J, �, �5 = ln�6∗� + �^�� − �^�� +�� − 1� ∑ ^�S
 −�
8� ∑ �2 + �
�ln �S
D�
8� + 1� +∑ �
^�J + ��� − ���� − 1� −���
8� ∑ �� −���
8����
�ln �1 − J�                                              (3.1) 
Since the probability I3� = �5 is free from 
parameters �, � and �, the estimation of this 
parameter can be directly driven from log of equation   
(2.8) aLKb�089�ac = ∑ 9:E#&:N&c − d�K���������∑ ���
�9:E#&:N& e��c = 0  �1 − J� ∑ �
���
8� − �� − ���� − 1�J +J ∑ �� − ���
���
8� = 0  ∑ �
���
8� − Jf∑ �
 + �� − ���� − 1� −���
8�∑ �� − ���
���
8� g = 0  
Therefore, we have Ĵ = ∑ 9:E#&:N&������K����∑ ���
���9:E#&:N&         (3.2) 

Differentiate (3.1) with respect to �,  � and �, we 
obtain aLaD = �D + ∑ ^�S
�
8� − ∑ �2 + �
��V:�LKV:�(V:� ��
8� = 0 (3.3) 

i^i� = �� − 1� j 1S
 A−1� B�

8�

− j �2 + �
��1 + S
D� �S
D�� A−1� B�

8�

= 0 

Therefore, aLaT = − !D��F % ∑ S
 ���
8� + !DF% ∑ ��(9:���(V:�� S
D�� = 0�
8�                                                                 

                                                                             (3.4) aLaT = !D��F % ∑ S
���
8� − !DF% ∑ ��(9:���(V:�� S
D�� = 0�
8�                                                                  

i^i� = − �� + �� − 1� j 1S
 A−S
� B�

8�

− j �2 + �
��1 + S
D� �S
D�� A−S
� B�

8�

= 0 

Therefore, aLaF =
− �F − !D��F % ∑ S
��S
�
8� + !DF% ∑ ��(9:���(V:��� S
D = 0�
8�                                                         

                                                                         (3.5) i^i� = �� + A� − 1� B j S
��S

�


8�
− A��B j �2 + �
��1 + S
�D� S
D     = 0�


8�
 

                              .  

Equations should be referred to in abbreviated form, 
e.g. “Eq. (1)”. In multiple-line equations, the number 
should be given on the last line. 
Displayed equations are to be centered on the page 
width. Standard English letters like x are to appear as 
x (italicized) in the text if they are used as 
mathematical symbols. Punctuation marks are used at 
the end of equations as if they appeared directly in the 
text. 

4. MODIFIED MAXIMUM LIKELIHOOD 
ESTIMATION OF PARAMETERS X 
AND  Y 

We assume here that shape parameter � in 
equation (2.1) is known. The ML equations (3.4) and 
(3.5) do not have explicit solution for � and �.  This is 

due to the fact that the term l�S� = m�#& �(m� is 

intractable. The solution of equations (3.4) and (3.5) 
can be evaluated numerically by some suitable 
interative procedure such a Newton-Rapshon method 
for given values of ��, �, �, ��.  To derive the 
modified maximum likelihood estimators which are 
asymptotically fully efficient we will use Tiku and 
Suresh [16] approach to approximate ML equations 

for  � and � by linearizing the term l�S� = m�#&
�(m� 

using the Taylor series expansion around the quantile 
point of , i.e. n�
� = o3p�
�5. 
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First order of approximation of S
��  and l�S
� =m:�#&
�(m:�  around quantile point of , are: S
�� = ��
 − ��
S
                         (4.1) 
where  ��
 = − q rrV S�� = −S��sV8t: = n
��;  ��
 = l��n
� +��
l�′�n
� = n
�� + n
��n
 = 2n
��  
 l��S
� = l��n
� + �S
 − n
�l�′�n
� 
          = �l��n
� − n
l�′�n
�� + l�,�n
�S
             = ��
 + ��
S
                    (4.2) 
Where ��
 = l�′�n
�
= u vvS SD��1 + zα = �1 + SD��α − 1�SD�� − SD���SD���1 + SD��
= �α − 1�SD�� − S�D���1 + SD�� xm8t:

 

           

           = �α���t:�#*�t:*�#*
��(t:��*   and ��
 = l�n
� − n
l′�n
�

= n
D���1 + n
D� − n

∗ @�� − 1�n
D�� − n
�D��

�1 + n
D�� C 
      = ��(t:��t:�#&��D���t:�#&(t:*�#&

��(t:��* = ���α�t:�#&(�t:*�#&
��(t:��*  

The approximate value of n
 obtained from the solving 
equation 

y ��S�t:
= vS = �� + 1 = z
 

� y SD���1 + SD��
t:

= vS = �� + 1 = z
 
 We have n
 = � {:��{:��/D    for � = 1,2, … , � 

Substitute the values of equation (4.1) and (4.2) in 
equations (3.4) and (3.5), we have the modified 
likelihood equations are  i^∗i� ≅ i^i� = − A� − 1� B j3��: − ��:S
5�


8�
+ �� j�2 + �
�3��: + ��:S
5 = 0�


8�
 

− 1� jd�� − 1���: − ��2 + �
���:e
�


8�
+ 1� jd�� − 1���:

�

8�+ ��2 + �
���:gS
 = 0 ��F ∑ ∆} +�
8� �F ∑ ~
S
 = 0�
8�             (4.3) 

Where ∆} = d�� − 1���: − ��2 + �
���:e and 

            ~
 = d�� − 1���: + ��2 + �
���:e 
Therefore, −1� j∆} +�


8�
1� j ~
 A�
 − �� B = 0�


8�
 

1� j∆} −�

8�

1�� j ~
�
 + 1�� j ~
��

8�

= 0�

8�

 

� j∆} −�

8�

j ~
�
 + �� = 0�

8�

 

�∗� ∑ ∆}�
8�� − ∑ ~
�
�
8�� + �∗� = 0 

Hence, �∗� = � − ∆�∗�         (4.4) 

where � = ∑ ~
�
8�  , ∆ = ∑ ∆�E:N&�  and  � = ∑ �:/:E:N&�  

i^∗i� ≅ i^i� = − �� − � − 1� j3��: − ��:S
5S

�


8�
+ �� j�2 + �
�3��: + ��:S
5S
 = 0�


8�
 

⇒ − �� − 1� jd�� − 1���: − ��2 + �
���:eS

�


8�
+ 1� jd�� − 1���:

�

8�+ ��2 + �
���:gS
� = 0 

⇒ − �� − 1� j∆} A�
 − �� B +�

8�

1� j ~
 A�
 − �� B� = 0�

8�

 

⇒�F + �F ∑ ∆} !/:��(�(TF % _�
8� �F ∑ ~
 !/:��(��TF %� = 0�
8�
                   

⇒ �� + 1�� j∆}��
 − �� + �� − ���� j∆}
�


8�
�


8�
− 1�P j ~
��
 − ��� −�


8�
 

    
���T�*

F� ∑ ~
�
8� − ����T�F� ∑ ~
��
 − ���
8� = 0 

Since, ∑ ~
��
 − ���
8� = 0 and using equation (4.4) 
We have, �F + �F* − UF� = 0 ⇒ ��� + �� − 6 = 0    (4.5)  

Therefore we have, �∗� = ��±��*(��U��        (4.6) 

where � = ∑ ∆}��
 − ���
8�   
    and 6 = ∑ ~
��
 − ����
8�  
It should be mentioned here that upon solving 
equation (4.5) for �, we obtain a quadratic equation 
in �  which has two roots; however one of them 
dropouts since � > 0.  For skewed distribution ∆ = 0, 
off-course the divisor 2� may be replaced by 2���� − 1� to reduce the bias if any. If ~
 > 0 for 
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any � = 1,2, … , � the �� is real and positive. (Tiku ad 
Akkaya, p.29). Therefore, 

 �∗� = ��(��*(��U��������          (4.7) 

The appropriate MMLES in (4.4) and (4.7) may 
provide as with a good starting value for the iterative 
solution of the likelihood equations (3.4) and (3.5). 

5. OBSERVED FISHER INFORMATION, 
RELIABILITY CHARACTERISTICS, 
CONFIDENCE INTERVALS AND 
COVERAGE PROBABILITIES 

Using the log-likelihood equations in (3.4) and (3.5), 
we obtain the observed Fisher information as a*LaT* =
− D��F ∑ !− �V:*% +�
8� DF ∑ �2 +�
8�
�
� ���(V:���D���V:�#*!#& %�V:�#&DV:�#&!#& %

��(V:��* �  

                a*LaT* = !D��F* % ∑ �S
��� − ! DF*% ∑ �2 +�
8��
8��
� ���(V:���D���V:�#*�DV:*�#*
��(V:��* �                              (5.1) 

a*LaF* = �F* + � !D��F* % − !D*
F*% ∑ �2 + �
� V:�

��(V:��*�
8�                                                                    

                                                                           (5.2) a*LaTaF = − D��F ∑ �−1��S
��� !�V:F % −�
8� �� −
1� ∑ S
�� !− �F*%�
8� +  DF ∑ �2 +�
8�
�
� ���(V:���D���m:�#*!��: %�m:�#&Dm:�#&!#�: %

��(V:��* � +
!�DF*% ∑ ��(9:���(V:�� S
D���
8�   

=− D*
F* ∑ �2 + �
� ���(V:���D���m:�#&�m:*�#&Dm:�#&

��(V:��* +�
8�V:�#&
��(V:��� 

a*LaTaF = − !D*
F*% ∑ ��(9:���(V:��* S
D���
8�                   (5.3) 

We derive the similar expansions for the appropriate 
likelihood equations (4.3) and (4.5): a*L∗
aT* ≅ !��F*% ∑ ~
�
8�            (5.4) 

a*L∗
aF* ≅ �F* − �!�F% ∑ ∆
 !�m:F % + ∑ �∆
S
� !��F*%�
8��
8� � +
�!�F% ∑ �~
2S
� !�m:F % +�
8� ∑ �~
S
�� !��F*%�
8� �  

        ≅ �F* + ! �F*% ∑ �∆
S
��
8� − ! PF*% ∑ �~
S
���
8�                                                                        

                                                                   (5.5) a*L∗
aTaF ≅
!∑ ∆:E:N&F* % + q!�F% ∑ ~
 !�m:F % +�
8� ∑ �~
S
� !��F*%�
8� s ≅
!∑ ∆:E:N&F* % − ! �F*% ∑ �~
S
��
8�         (5.6) 

From these expressions of observed Fisher 
information, we can obtain asymptotic variance of the 
approximate MLE (instead of basing it on the 
expected Fisher information). Unfortunately, the exact 
mathematical expression for the expected Fisher 
information is difficult to obtain. 
 o !− a*LaT*% = !D��F* % ∑ o�−�S
���� + ! DF*% ∑ �2 +�
8��
8��
�o ���(V:���D���V:�#*�DV:*�#*

��(V:��* � 

o !− a*LaF*% = − �F* − � !D��F* % + !D*
F*% ∑ �2 +�
8��
�o� V:�

��(V:��*�  

o !− a*LaTaF% = !D*
F*% ∑ �2 + �
�o� V:�#&

��(V:��*��
8�   

One has to study the estimates and their asymptotic 
variance-covariance matrix through Monte Calro 
simulation techniques. Therefore, the observed Fisher 
information matrix which is given by 

�=��� = � − a*LaT* − a*LaTaF− a*LaFaT − a*LaF*
�

T8T�,F8F�
         (5.7) 

Hence, the variance-covariance matrix becomes �=�����.  Alternatively one can use the equations (5.4-
5.6) to obtain observed Fisher information matrix 
because asymptotically MML estimators and ML 
estimators are giving same results. The MLEs of 
reliability ��n� and hazard rate ℎ�n� can be evaluated 
using invariance properties of MLEs as  ���� = �

�(A"#$� � B� ; � > �̂, � > 0, �� > 0    (5.8) 

ℎ��� = .�/�0�/� = � � A"#$� � B�#&
�(A"#$� � B� ;  � > �̂, � > 0, �� > 0 (5.9) 

A two-sided normal approximate confidence interval 
for the parameters � and  � are  

�̂ ± S�/�����=��̂�  and  �� ± S�/�����=����, 

respectively. Also, the Monte Carlo simulation can be 
used to find the Coverage Probabilities (CP) 6IT = I '  T��T�¡¢9£�T��  ≤ S�/�)    and    

 6IF = I �¥ F��F
�¡¢9£�F��¥ ≤ S�/��         (5.10) 

where S�/� is the upper ¦/2 percentile of the standard 
normal distribution. 
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