
ISSN NO. 2456-3129  
 

International Journal of Engineering, Pure and Applied Sciences,  
Vol. 6, No. 1, March-2021 

 

1 
 

Stability of equilibrium points in photogravitational 
R3BP problem when primaries are triaxial rigid bodies 

and one an oblate spheroid 
Avdhesh Kumar1, Nasim Akhtar2 

1Department of Mathematics, Jaglal Chaudhary College, Chapra, (A Constituent unit of J. P. University, 
Chapra) – INDIA 

2B.B.Ram +2 School Nagra, Saran - INDIA 
Email: avdheshsahani@yahoo.com1, nasimakhtar198304@gmail.com 2       

 
Abstract-We have examined the stability of equilibrium points in the photogravitational R3BP when 
primaries are triaxial rigid bodies and one an oblate spheroid. We have found equations of motion and 
triangular equilibrium points of our problem. With the help of characteristic equation, we have 
discussed stability conditions. We conclude that triangular equilibrium points remain unstable, different 
from classical case. 
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1. INTRODUCTION 

The restricted three-body problem (R3BP) is a 
generalization of the classical restricted three-body 
problem (R3BP). The restricted three body problem 

describes the motion of an infinitesimal mass 3m
moving under the gravitational effect of the two 

massive primaries of masses 1m & 2m such tha

12 mm  . These primaries are assumed move in 

circular orbits around their centre of mass on account 
of their mutual attraction and the infinitesimal mass not 
influencing the motion of the primaries. It is well 
known that when two bodies orbit about each other, a 
mass less particle can  rest in a rotating co-ordinate 
frame at five particular points, two triangular and three 
collinear. Triangular equilibrium points are linearly 
stable, provided the mass ratio of the primaries is small 
enough. Wintner (1941) showed that the stability of the 
two equilateral points is due to the existence of coriolis 
terms in the equations of motion written in a synodic 
co-ordinate system. In recent times many perturbing 
forces, that is, oblateness and radiation forces of the 
primaries, coriolis and centrifugal forces, variation of 
the masses of the primaries included in the study of the 
restricted three body problem Szebehely (1967 b) 
considered the effect of small perturbation of the 
coriolis force keeping the centrifugal force constant. 
Subba Rao and Sharma (1975) considered the problem 
with one of the primaries as an oblate spheroid and its 
equatorial plane coinciding with the plane of motion. 
Bhatnagar and Hallan (1978) studied the effect of 
perturbation in the centrifugal and coriolis forces. 
Bhatnagar and Hallan (1979) studied the effect of 
perturbed potentials on the linear stability of libration 
points in the restricted three body problem. Bhatnagar 
and Gupta (1986) studied the existence and stability of 

the equilibrium points of a triaxial rigid body moving 
around another triaxial rigid body. Khanna and 
Bhatnagar (1998) studied the linear stability of L4 in 
the restricted three body problem when the smaller 
primary is a triaxial rigid body.In this paper,we have 
studied the  stability of equilibrium points in the 
photogravitational restricted three body problem when 
primaries are triaxial rigid bodies with one of its axes 
as axis of symmetry and its equatorial plane conciding 
with the plane of motion.The bigger primary is taken 
as an oblate spheroid whose equatorial plane also 
concides with the plane of motion .Further,we assume 
that the primaries are moving without rotation in 
circular orbits around their center of mass. 
 

Equation of Motion: - Let 1m and 2m  be 
the masses of the bigger and smaller primaries. 
The distance between the primaries does not 
change and is taken as unity, the sum of the 
masses of the primaries is also taken as unity. The 
unit of time is so chosen as to make the 
gravitational constant unity. Using dimensionless 
variables, the equations of motion of infinitesimal 
mass 3m  in a synodic co-ordinate system (x, y) 

are  
               
                xynx   2              .... (1) 

     yxny   2             .... (2) 
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 2,1,, icba iii  as the length of its semi-axis, R 

is the distance between the primaries and the mean 
motion given in the equation.     
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Triangular Equilibrium Points:- 
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The triangular equilibrium points ( 0y ) 

        0 x                              .... (5)                                         

        0 y                              …(6) 
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…. (7) 
   1, 21   xx                                                                                                        

21
21

2   with
2

1
mm

mm

m



 being the 

masses of the primaries. 
If we take 021  ii   (i = 1, 2) and A1=0 the 

solution of the equation (5) and (6) is given by 
121  rr  and from the equation (4), 1n . 

Now, we suppose that the solution for the equation 
(5) and (6) when  2,1,, 211 iA ii   are not 

equal to zero be  
  1,1 21 rr  …. (8) 

where 1,  . Putting the value of r1 and r2 
from the equation (8) in equation (7), we get 
Rejecting the higher order terms, we get 

   
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x  .... (9) 
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Putting the values of r1, r2 from the equation (6) 
and x, y from the equation (9) & (10) in the 

equation (5) and (6), rejecting higher order terms, 
we get  and   

Putting the values of  and  in equation (9) & 
(10), we get the co-ordinates (x, y) of the 
equilibrium points as    
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Stability of equilibrium points 
Let the co-ordinate of the triangular points L4,5 be 
denoted by   vuyx ,., 00  denote small 

displacement of the third body from L4.By 
Taylor’s theorem, we have 

At the equilibrium points  00 , yx  we have  

00  x    and   00  y         
0000 , yyyxyyyxxx vuvu  , 

superscript denote value of derivative at L4 . 
 Putting the value in equation (1) and (2), we have 

 002 xyxx vuvnu        .... (13) 

 002 yyyx vuunv          .... (14) 

Let, tt BevAeu   ,  be the trial solution of 

equation (13) and (14).  
These will have a non-trivial solution  

    04
200022004  yyyyxxyyxx n       

                                                                 ….(15) 
 (i) crit0  

Putting in equation (16) and replacing 
2  by Λ in 

the equation (15)  
 02  BA    
           .... 
(16) 
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.... (18) 

If  2,1,, 211 iA ii   are equal to zero, then 

0   is a root of the equation (18) where 

...0385208965.00   (Szebehely 1967). When 

 2,1,, 211 iA ii   are not equal to zero, 

we suppose, 

152241232121110 Axxxxxcrit    

as the roots of the equation (18). 
where 54321 ,,,, xxxxx  are to be determined in 

such a manner  that BA 42  =0 
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                                 ……(19) 

But 0A , therefore  1 and 2  are negative. 

Therefore  in this case, the four roots of the 
characteristic equation are written as 
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…. (20) 

This shows that the equilibrium point is 
stable.  
Now, we introduce the variable  , by the 
transformation 
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This is equivalent to the rotation of the co-ordinate 
system by  . We choose in such a way that the 

term containing  , in 0  
The new quadratic form becomes  
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…..(21) 

2 2
11 21

2 2
12 22 1

tan2

3 3 1 1 1
(8 47 89 ) ( 8 9 37 )

2 2 24 24

1 1 1
( 50 131 89 ) (36 65 37 ) (7 10 )

24(1 ) 24(1 ) 4

N

D

N

A



      
 

      
 



         


          

 

2 2
11 21 12

2
22 1 1

3 3 3 3
(8 5 15 ) ( 8 3 23 ) ( 2 25 )

4 16 16 16(1 )

3 3 39
(12 43 23 ) (15 8 )

16(1 ) 16 16

D

A A

      
  

   


          


       

 

                                                                     
…..  (22) 

Also, using the Jacobi constant, we have 
     nmlC 2222 22                                                                                   
……  (23) 
Hence, it follows that the above curve is an ellipse 
and the direction  of the 
major axis is given by the equation(24) .The 
length of semi-major and semi-minor axis are 
given by 
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where nml ,,  are given by the equation (21) and 

C  depends upon the 
 initial conditions. 
(ii) 5.0crit  

This discriminant of the characteristic equation is 
negative. 

Also             
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where A is given by the equation (20) and 
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….. (25)                                                                                                          
So, the roots of the characteristic equation are 
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                                                           ….. (26) 
where A and  are given by the equation (17) and 
(25). 
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Therefore, it follows that the real parts of two of 
the characteristic roots are positive  
and equal and so the equilibrium point in this case 
is unstable. 

(iii) crit   

When crit  ,      D=0 

Consequently,   

2
,

2
,

2 42312,1

A
i

A
i

A
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
   

The double roots give secular term in the solution 
of the equations of motion and  
so the equilibrium point is unstable. 
 
Conclusion 

In this paper, we have studied the linear stability 
of equilibrium points in the photogravitational 
R3BP when primaries are triaxial rigid bodies and 
one an oblate spheroid. It is seen that there are five 
equilibrium points, two triangular and three 
collinear. 
(i)    The co-ordinates of the triangular equilibrium 
points are the equation (11) and (12). 
(ii)   The mean motion ‘n’ of the primaries is given 
the equation (4) 
(iii)   When both the bodies are spheroid in shape 

2

3
,

2

1
,0122122111  yxA   

The results obtained are in agreement with 
those of the classical problem. 
(iv) When the triaxial bodies are not an oblate 
spheroid whose equatorial plane  
       coincides with the plane of motion i.e. 

  2111 and   2212 and  
       01 A ,then the co-ordinates of L4,5 

becomes 
         








 





32

3
,

22

1  yx  

 The results obtained are in agreement 
with those of Bhatnagar and Hallan 
(1979). 

  (v)  The stability of L4 depends upon a value 
           0385208965.0crit  

   (a)    For crit0 ,L4,5 is stable. 

          It may be noted that the range of 
stability decreases when compared to the 
          classical case 
    (b)   For 5.0crit ,L4,5 is unstable and 

    (c)   For ,crit  L4,5 is unstable. 
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