Stability of equilibrium points in photogravitational R3BP problem when primaries are triaxial rigid bodies and one an oblate spheroid

Avdhesh Kumar ${ }^{1}$, Nasim Akhtar ${ }^{2}$
${ }^{1}$ Department of Mathematics, Jaglal Chaudhary College, Chapra, (A Constituent unit of J. P. University, Chapra) - INDIA
${ }^{2}$ B.B.Ram +2 School Nagra, Saran - INDIA
Email: avdheshsahani@yahoo.com¹, nasimakhtar198304@gmail.com ${ }^{2}$

Abstract

We have examined the stability of equilibrium points in the photogravitational R3BP when primaries are triaxial rigid bodies and one an oblate spheroid. We have found equations of motion and triangular equilibrium points of our problem. With the help of characteristic equation, we have discussed stability conditions. We conclude that triangular equilibrium points remain unstable, different from classical case.

Keywords:-Stability/EquilibriumPoints/PhotogravitationalRTBP/TriaxiaRigidBodies/Oblate Spheroid.

1. INTRODUCTION

The restricted three-body problem (R3BP) is a generalization of the classical restricted three-body problem (R3BP). The restricted three body problem describes the motion of an infinitesimal mass m_{3} moving under the gravitational effect of the two massive primaries of masses $m_{1} \& m_{2}$ such tha $m_{2}<m_{1}$. These primaries are assumed move in circular orbits around their centre of mass on account of their mutual attraction and the infinitesimal mass not influencing the motion of the primaries. It is well known that when two bodies orbit about each other, a mass less particle can rest in a rotating co-ordinate frame at five particular points, two triangular and three collinear. Triangular equilibrium points are linearly stable, provided the mass ratio of the primaries is small enough. Wintner (1941) showed that the stability of the two equilateral points is due to the existence of coriolis terms in the equations of motion written in a synodic co-ordinate system. In recent times many perturbing forces, that is, oblateness and radiation forces of the primaries, coriolis and centrifugal forces, variation of the masses of the primaries included in the study of the restricted three body problem Szebehely (1967 b) considered the effect of small perturbation of the coriolis force keeping the centrifugal force constant. Subba Rao and Sharma (1975) considered the problem with one of the primaries as an oblate spheroid and its equatorial plane coinciding with the plane of motion. Bhatnagar and Hallan (1978) studied the effect of perturbation in the centrifugal and coriolis forces. Bhatnagar and Hallan (1979) studied the effect of perturbed potentials on the linear stability of libration points in the restricted three body problem. Bhatnagar and Gupta (1986) studied the existence and stability of
the equilibrium points of a triaxial rigid body moving around another triaxial rigid body. Khanna and Bhatnagar (1998) studied the linear stability of L_{4} in the restricted three body problem when the smaller primary is a triaxial rigid body.In this paper, we have studied the stability of equilibrium points in the photogravitational restricted three body problem when primaries are triaxial rigid bodies with one of its axes as axis of symmetry and its equatorial plane conciding with the plane of motion. The bigger primary is taken as an oblate spheroid whose equatorial plane also concides with the plane of motion .Further, we assume that the primaries are moving without rotation in circular orbits around their center of mass.

Equation of Motion: - Let m_{1} and m_{2} be the masses of the bigger and smaller primaries. The distance between the primaries does not change and is taken as unity, the sum of the masses of the primaries is also taken as unity. The unit of time is so chosen as to make the gravitational constant unity. Using dimensionless variables, the equations of motion of infinitesimal mass m_{3} in a synodic co-ordinate system (x, y) are

$$
\begin{gather*}
\ddot{x}-2 n \dot{y}=\Omega_{x} \tag{1}\\
\ddot{y}+2 n \dot{x}=\Omega_{y} \tag{2}
\end{gather*}
$$

$\Omega=\sum_{i=1}^{2}\left[\frac{1}{2} n^{2} \mu r_{i}^{2}+\frac{\mu_{i}}{r_{i}}+\frac{\mu_{i}}{2 r_{i}^{3}}\left(2 \sigma_{1 i}-\sigma_{2 i}\right)-\frac{3 \mu_{i}}{2 r_{i}^{5}}\left(\sigma_{1 i}-\sigma_{2 i}\right) y^{2}\right]+\frac{\mu_{1}}{2 r_{1}^{3}} A_{1}$
$\sigma_{1 i}=B_{1 i}-B_{3 i}, \sigma_{2 i}=B_{2 i}-B_{3 i} \quad B_{1 i}=\frac{a_{i}^{2}}{5 R^{2}}$,
$B_{2 i}=\frac{b_{i}^{2}}{5 R^{2}}, \quad B_{3 i}=\frac{c_{i}{ }^{2}}{5 R^{2}} \quad(i=1,2)$
$a_{i}, b_{i}, c_{i}(i=1,2)$ as the length of its semi-axis, R is the distance between the primaries and the mean motion given in the equation.
$n^{2}=1+\sum_{i=1}^{2} \frac{3}{2}\left(2 \sigma_{1 i}-\sigma_{2 i}\right)+\frac{3}{2} A_{1}$

Triangular Equilibrium Points:-

$$
\begin{array}{r}
\Omega_{x}=n^{2} x+\sum_{i=1}^{2}\left[\frac{\mu_{i}}{r_{i}^{3}}\left(x-x_{i}\right)-\frac{3 \mu_{i}}{2 r_{i}^{5}}\left(2 \sigma_{1 i}-\sigma_{2 i}\right)\left(x-x_{i}\right)\right. \\
\left.+\frac{15 \mu_{i}}{2 r_{i}^{7}}\left(\sigma_{1 i}-\sigma_{2 i}\right)\left(x-x_{i}\right) y^{2}\right]-\frac{3 \mu_{1}\left(x-x_{1}\right)}{2 r_{1}^{5}} \\
\Omega_{y}=n^{2} y+\sum_{i=1}^{2}\left[\frac{\mu_{i} y}{r_{i}^{3}} \frac{3 \mu_{i}\left(4 \sigma_{i 1}-3 \sigma_{2 i}\right) y}{2 r_{i}^{5}}+\frac{15 \mu_{i}\left(\sigma_{i 1}-\sigma_{2 i}\right)}{2 r_{i}^{7}} y^{3}\right]-\frac{3 \mu_{2} y}{2 r_{i}^{5}} A_{i}
\end{array}
$$

The triangular equilibrium points $(y \neq 0)$

$$
\begin{gather*}
\Omega_{x}=0 \\
\Omega_{y}=0 \\
r_{1}^{2}=(x-\mu)^{2}+y^{2}, \quad r_{2}^{2}=(x-\mu+1)^{2}+y^{2} \\
x_{1}=\mu, \tag{7}\\
\mu=\frac{m_{2}}{m_{1}+m_{2}} \leq \frac{1}{2} \text { with } m_{1} \geq m_{2} \text { being }
\end{gather*}
$$

masses of the primaries.
If we take $\sigma_{1 i}=\sigma_{2 i}=0(\mathrm{i}=1,2)$ and $\mathrm{A}_{1}=0$ the solution of the equation (5) and (6) is given by $r_{1}=r_{2}=1$ and from the equation (4), $n=1$.
Now, we suppose that the solution for the equation (5) and (6) when $A_{1}, \sigma_{1 i}, \sigma_{2 i}(i=1,2)$ are not equal to zero be

$$
\begin{equation*}
r_{1}=1+\alpha, r_{2}=1+\beta \tag{8}
\end{equation*}
$$

where $\alpha, \beta \ll 1$. Putting the value of r_{1} and r_{2} from the equation (8) in equation (7), we get Rejecting the higher order terms, we get

$$
\begin{align*}
& x=\mu-\frac{1}{2}+(\beta-\alpha) . \tag{9}\\
& y= \pm \frac{\sqrt{3}}{2}\left[1+\frac{2}{3}(\alpha+\beta)\right] \tag{10}
\end{align*}
$$

Putting the values of $\mathrm{r}_{1}, \mathrm{r}_{2}$ from the equation (6) and x, y from the equation (9) \& (10) in the
equation (5) and (6), rejecting higher order terms, we get α and β
Putting the values of α and β in equation (9) \& (10), we get the co-ordinates (x, y) of the equilibrium points as

$$
\begin{align*}
x= & \mu-\frac{1}{2}+\frac{1}{8 \mu}(4-\mu) \sigma_{11}-\frac{1}{8 \mu}(4+3 \mu) \sigma_{21} \\
& -\frac{1}{8(1-\mu)}(3+\mu) \sigma_{12}+\frac{1}{8(1-\mu)}(7-3 \mu) \sigma_{22}-\frac{1}{2} A_{1} \tag{11}
\end{align*}
$$

$$
\begin{align*}
y & = \pm \frac{\sqrt{3}}{2}\left[1+\frac{2}{3}\left\{+\frac{1}{8 \mu}(4-23 \mu) \sigma_{11}+\frac{1}{8 \mu}(-4+19 \mu) \sigma_{21}\right.\right. \\
& \left.\left.+\frac{1}{8(1-\mu)}(-19+23 \mu) \sigma_{12}+\frac{1}{8(1-\mu)}(15-19 \mu) \sigma_{22}-\frac{1}{2} A_{1}\right\}\right] \tag{12}
\end{align*}
$$

Stability of equilibrium points

Let the co-ordinate of the triangular points $\mathrm{L}_{4,5}$ be denoted by $\left(x_{0}, y_{0}\right) \cdot u, v$ denote small displacement of the third body from L4.By Taylor's theorem, we have
At the equilibrium points $\left(x_{0}, y_{0}\right)$ we have
$\Omega_{x}^{0}=0$ and $\Omega_{y}^{0}=0$
$\Omega_{x}=u \Omega_{x x}^{0}+\nu \Omega_{y y}^{0}, \quad \Omega_{y}=u \Omega_{y x}^{0}+\nu \Omega_{y y}^{0}$,
superscript denote value of derivative at L_{4}
Putting the value in equation (1) and (2), we have

$$
\begin{align*}
& \ddot{u}-2 n \dot{v}=u \Omega_{x x}^{0}+v \Omega_{x y}^{0} \tag{13}\\
& \ddot{v}+2 n \dot{u}=u \Omega_{y x}^{0}+v \Omega_{y y}^{0} \tag{14}
\end{align*}
$$

Let, $u=A e^{\lambda t}, v=B e^{\lambda t}$ be the trial solution of equation (13) and (14).
These will have a non-trivial solution $\lambda^{4}-\left(\Omega_{x x}^{0}+\Omega_{y y}^{0}-4 n^{2}\right) \lambda^{2}+\Omega_{x x}^{0} \Omega_{y y}^{0}-\left(\Omega_{y y}^{0}\right)^{2}=0$
(i) $0 \leq \mu \angle \mu_{\text {crit }}$

Putting in equation (16) and replacing λ^{2} by Λ in the equation (15)

$$
\begin{equation*}
\Lambda^{2}+A \Lambda+B=0 \tag{16}
\end{equation*}
$$

where
$A=1+3 \sigma_{11}+\frac{3}{2}(-3+2 \mu) \sigma_{21}+3 \sigma_{12}-\frac{3}{2}(1+2 \mu$
$B=\frac{27}{4} \mu(1-\mu) \quad+\frac{9}{16}(1-\mu)(-10+89 \mu) \sigma_{11}$
$+\frac{9}{16}(1-\mu)(10-37 \mu) \sigma_{21}$
$+\frac{9}{16} \mu(79-89 \mu) \sigma_{12}+\frac{9}{16} \mu(-27+37 \mu) \sigma_{22}$
$+\frac{1}{32}\left(-153+10638 \mu-14580 \mu^{2}\right) A_{1}$
Consequently, the roots
$\lambda_{1}=+\Lambda_{1}^{1 / 2}, \quad \lambda_{2}=-\Lambda_{1}^{1 / 2}$,
$\lambda_{3}=+\Lambda_{2}^{1 / 2}, \quad \lambda_{4}=-\Lambda_{2}^{1 / 2}$ depend in a simple manner, on the value of the mass parameter $\mu, \sigma_{1 i}, \sigma_{2 i}(i=1,2)$ and A_{1}. Now the discriminant of the equation (16) is zero if $A^{2}-4 B=0$.
$1-27 \mu(1-\mu)$
$-\frac{3}{4}\left[-38+297 \mu-267 \mu^{2}\right] \sigma_{11}-\frac{3}{4}\left[42-149 \mu+111 \mu^{2}\right] \sigma_{2}\left\{\frac{3}{4}+\frac{3}{16 \mu}\left(8+5 \mu-15 \mu^{2}\right) \sigma_{11}+\frac{3}{16 \mu}\left(-8-3 \mu+23 \mu^{2}\right) \sigma_{21}+\frac{3}{16(1-\mu)}(-2+25 \mu) \sigma_{12}\right.$

If $A_{1}, \sigma_{1 i}, \sigma_{2 i}(i=1,2)$ are equal to zero, then $\mu=\mu_{0}$ is a root of the equation (18) where $\mu_{0}=0.0385208965 \ldots$... (Szebehely 1967). When $A_{1}, \sigma_{1 i}, \sigma_{2 i}(i=1,2)$ are not equal to zero,
we suppose,
$\mu_{c r i t}=\mu_{0}+x_{1} \sigma_{11}+x_{2} \sigma_{21}+x_{3} \sigma_{12}+x_{4} \sigma_{22}+x_{5} A_{1}$ as the roots of the equation (18).
where $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ are to be determined in such a manner that $A^{2}-4 B=0$
$1-27\left(\mu_{0}+x_{1} \sigma_{11}+x_{2} \sigma_{21}+x_{3} \sigma_{12}+x_{4} \sigma_{22}+x_{5} A_{1}\right)(1-$

$$
\begin{equation*}
\left.-x_{3} \sigma_{12}-x_{4} \sigma_{22}-x_{5} A_{1}\right)+P_{1} \sigma_{11}+P_{2} \sigma_{21}+P_{1}^{\prime} \sigma_{12}+P_{2}^{\prime} \sigma_{22} \cdots P_{3} A_{1-}(2 \underline{2} \underline{b} \tag{19}
\end{equation*}
$$

But $A>0$, therefore \wedge_{1} and \wedge_{2} are negative.
Therefore in this case, the four roots of the characteristic equation are written as
$\lambda_{1,2}= \pm i\left(-\wedge_{1}\right)^{1 / 2}= \pm i s_{1}$
$\lambda_{3,4}= \pm i\left(-\wedge_{2}\right)^{1 / 2}= \pm i s_{2}$
.... (20)

Also, using the Jacobi constant, we have

$$
\begin{equation*}
C=2 \Omega=2 \bar{l} \xi^{2}+2 \bar{m} \eta^{2}+2 \bar{n} \tag{23}
\end{equation*}
$$

Hence, it follows that the above curve is an ellipse and the direction α of the
major axis is given by the equation(24).The length of semi-major and semi-minor axis are given by $a_{s m}=\left(\frac{C-2 \bar{n}}{-\bar{x}^{-}}\right)^{\frac{1}{2}}$ and $\quad a_{s m}=\left(\frac{C-2 \bar{n}}{2 \bar{m}}\right)^{\frac{1}{2}}$
This shows that the equilibrium point is stabil(e- $-4 \mu) A_{1}>0$ the variable $\bar{\xi} \bar{\eta}$ by the transformation
$\xi=\bar{\xi} \cos \alpha-\bar{\eta} \sin \alpha$
$\eta=\bar{\xi} \sin \alpha+\bar{\eta} \cos \alpha$
This is equivalent to the rotation of the co-ordinate system by α. We choose α in such a way that the term containing $\bar{\xi}, \bar{\eta}$ in $\Omega=0$
The new quadratic form becomes

$$
\begin{equation*}
\Omega=\bar{l} \xi^{2}+\bar{m} \eta^{2}+\bar{n} \tag{17}
\end{equation*}
$$

$\tan 2 \alpha=\frac{N}{D}$
$N=\frac{3 \sqrt{3}}{2}\left\{\mu-\frac{1}{2}+\frac{1}{24 \mu}\left(8-47 \mu+89 \mu^{2}\right) G_{11}+\frac{1}{24 \mu}\left(-8+9 \mu-37 \mu^{2}\right) \sigma_{21}+\right.$ $\left.\frac{1}{24(1-\mu)}\left(-50+131 \mu-89 \mu^{2}\right) \sigma_{12}+\frac{1}{24(1-\mu)}\left(36-65 \mu+37 \mu^{2}\right) \sigma_{2}-\frac{1}{4}(7-10 \mu) A\right\}$

A
...... (23)
where $\bar{l}, \bar{m}, \bar{n}$ are given by the equation (21) and C depends upon the initial conditions.
(ii) $\mu_{\text {crit }} \angle \mu \angle 0.5$

This discriminant of the characteristic equation is negative.
Also $\quad \Lambda_{1,2}=\frac{-A \pm \sqrt{D}}{2}$
where A is given by the equation (20) and $D=A^{2}-4 B, \quad \Lambda_{1,2}=\frac{1}{2}[-A \pm i \delta]$
where $0 \angle \delta=D^{\frac{1}{2}}$ and is given by

So, the roots of the characteristic equation are

$$
\begin{equation*}
\Lambda_{1,2}= \pm \Lambda_{1} \frac{1}{2}, \Lambda_{3,4}= \pm \Lambda_{2} \frac{1}{2} \tag{25}
\end{equation*}
$$

These roots are equal and are given by

$$
\begin{equation*}
|\lambda|=\left|\lambda_{1,2,3,4}\right|=\frac{1}{\sqrt{2}}\left(A^{2}+\delta^{2}\right)^{\frac{1}{4}} \tag{26}
\end{equation*}
$$

where A and δ are given by the equation (17) and (25).

$$
\alpha=\frac{\delta}{2 \sqrt{2 \lambda \lambda^{2}+A}}>0 \quad, \quad \beta=\frac{\sqrt{A+\left.2 \lambda\right|^{2}}}{2}>0
$$

Therefore, it follows that the real parts of two of the characteristic roots are positive
and equal and so the equilibrium point in this case is unstable.
(iii) $\mu=\mu_{\text {crit }}$

When $\mu=\mu_{\text {crit }}, \quad \mathrm{D}=0$
Consequently,

$$
\Lambda_{1,2}=\frac{-A}{2} \quad, \quad \lambda_{1}=\lambda_{3}=i \sqrt{\frac{A}{2}}, \quad \lambda_{2}=\lambda_{4}=-i \sqrt{\frac{A}{2}}
$$

The double roots give secular term in the solution of the equations of motion and so the equilibrium point is unstable.

Conclusion

In this paper, we have studied the linear stability of equilibrium points in the photogravitational R3BP when primaries are triaxial rigid bodies and one an oblate spheroid. It is seen that there are five equilibrium points, two triangular and three collinear.
(i) The co-ordinates of the triangular equilibrium points are the equation (11) and (12).
(ii) The mean motion ' n ' of the primaries is given the equation (4)
(iii) When both the bodies are spheroid in shape
spheroid whose equatorial plane ${ }_{1}$
$\sigma_{11}=\sigma_{21}=\sigma_{12}=\sigma_{22}=A_{1}=0 \quad, \quad x=\mu-\frac{1}{2}, y= \pm \frac{\sqrt{3}}{2}$
The results obtained are in agreement with $A_{1}=0$,then the co-ordinates of $\mathrm{L}_{4,5}$ becomes

$$
x=\mu-\frac{1}{2}+\frac{\sigma^{\prime \prime}-\sigma}{2} \quad, y= \pm\left[\frac{\sqrt{3}}{2}-\frac{\sigma+\sigma^{\prime \prime}}{\sqrt{3}}\right]
$$

The results obtained are in agreement with those of Bhatnagar and Hallan (1979).
(v) The stability of L_{4} depends upon a value

$$
\mu=\mu_{c r i t}=0.0385208965-----
$$

(a) For $0 \leq \mu\left\langle\mu_{\text {crit }}, \mathrm{L} 4,5\right.$ is stable.

It may be noted that the range of stability decreases when compared to the classical case
(b) For $\mu_{\text {crit }}\langle\mu\langle 0.5, \mathrm{~L} 4,5$ is unstable and
(c) For $\mu=\mu_{\text {crit }}, \mathrm{L}_{4,5}$ is unstable.

References

[1].Broucke,R.,(1969). Stability of periodic orbits in the elliptic restricted three body problem, AIAA Journal, 7(6), 1003-1009.
[2].Douskos, C.N. and Perdios, E.A., (2002). On the stability of equilibrium points in the relativistic restricted three-body problem, Celest. Mech. \& Dyn. Astr. 52, pp. 312-321.
[3].F. A. Abd El-Salam, (2015). Stability of triangular equilibrium points in the elliptic restricted three body problem with oblate and triaxial primaries". Astrophysics and space science, April 2015, 357:15.10.1007/s10509-015-2308-5.
[4].Ishwar, B., (1997). Non-linear stability in the generalized restricted three body problem. Celestial Mechanics and Dynamical Astronomy, 65, pp. 253-289.
[5].Ishwar, B., Elipe, A., (2001). Secular Solutions at Triangular Equilibrium Point in the Generalise Photo gravitational Restricted Three Body Problem. Astrophysics and Space Science, Vol.277, No.3, Pp.437-446.
[6].Ishwer, B.,Elipe,A.(2001)Secular Solutions at Triangular Equilibrium Point in the Generalized Photogravitational Restricted Three Body

Problem'. Astrophysics and Space Science, Volume 277, Issue 3, pp.437-446.
[7].Jain Sanjay, Kumar Ajay and Bhatnagar, K. B., (2009). Periodic orbits around the collinear liberation points in the restricted three-body problem when the smaller primary is a triaxial rigid body and bigger primary is a source of radiation pressure. Indian J.phys. 83 (2), 171-184.
[8].Khanna, M. and Bhatnagar, K. B. (1998) 'Existence and stability of libration points in the restricted three-body problem when the smaller primary is a triaxial rigid body'. Indian J. Pure. Appl. Math. 29 (10), 1011.
[9].Kalantonis, V.S., Perdios, E.A.and Perdiou,A.E.,(2008).The sitnikov family and the associated Families of 3D periodic orbits in the Photogravitational RTBP with oblateness, Astrophysics and Space Science, Vol.315, pp.323334.
[10]. Kumar Avdhesh and Ishwar.B. (2012). Linear stability of triangular equilibrium points in the photogravitational restricted three body problem with triaxial rigid bodies and oblate spheroid. Nova science publishers, Inc.Vol.6, number 1, pp (JNSST 2012)
[11]. Lara, M., Elipe, A., (1997). Periodic orbits in the restricted three body problem with radiation pressure. Celestial Mechanics and Dynamical Astronomy, 68, pp.1-11.
[12]. Mittal, Amit; Ahmad, Iqbal; Bhatnagar, K.B., (2009). Periodic orbits generated by Lagrangian solutions of the restricted three body problem when one of the primaries is an oblate body, Astrophysics and Space Science, Vol.319:63-73.
[13]. Papadakis.K.E. and Kanavos.S.S. (2007). Numerical exploration of the photogravitational restricted five- body problem, Astrophysics and Space Science, Vol.310:119-130.
[14]. Rodica Roman and Vasile Mioc., (2006).Libration points in Schwarzschild circular restricted three body problem, Astrophysics and Space Science, Vol.304, pp.101-103.
[15]. Sharma, R.K.Taqvi, Z.A. and Bhatnagar, K. B. (2001). 'Existence and stability of libration points in the restricted three-body problem when the primaries are triaxial rigid bodies, Celest. Mech. \& Dyn. Astr. 79, pp. 119-133.
[16]. Singh Jagadish., Turn John Joel., (2012). Motion in the generalized restricted three- Body Problem. Astrophysics and Space Science.
[17]. Tripathi Deepak Kumar and Ishwar B., (2005). Linear stability of triangular equilibrium points in the photogravitational restricted three body problem with Poynting-Robertson drag. News Bull., Cal. Math. Soc., 28, (1and3).

