

Scheduled various Maps regarding Beta-Sets and Allied Groups

Priyadarshan¹, Amarjyot²

Assistant Professor, Ch. Devilal University, Sirsa (Haryana)^{1,2} *Email:pdbeniwal40@gmail.com*¹, amar94jyoti@gmail.com²

Abstract- The concept of group of functions, say $\beta ch(X,\tau)$ preserving β -closed sets containing homeomorphism group $h(X,\tau)$ was studied by Arora, Tahiliani and Maki. In continuation to that, we study some new isomorphisms, mappings, subgroups and their properties.

Keywords: α -open, β -open and β -irresolute mappings.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper we consider spaces on which no separation axiom are assumed unless explicitly stated. The topology of a space (By space we always mean a topological space) is denoted by τ and (X,τ) will be replaced by X if there is no chance of confusion. For ACX, the closure and interior of A in X are denoted by Cl(A) and Int(A) respectively. Let A be a subset of the space (X,τ) . Then A is said to be β-open [1] if $A \subseteq Cl(Int(Cl(A)))$. Its complement is β closed. The family of all β- open sets containing A is denoted by $\beta O(A)$ and all β -closed sets containing A is denoted by $\beta C(A)$. A is said to be α -open[6] if $A\subseteq Int(Cl(Int(A)))$ and its complement is α -closed. The union of all β open sets contained in A is called β- interior of A, denoted by β Int (A)[2].

A map $f:(X,\tau) \to (Y,\sigma)$ is called β -irresolute [4] if the inverse image of every β -open set in Y is β -open in X. It is called β c-homeomorphism [5] if f is β -irresolute bisection and f^{-1} is β -irresolute.

2. SUBGROUPS OF BCH(X; T)

For a topological space (X,τ) we have $h(X;\tau) = \{f \mid f : (X,\tau) \rightarrow (X,\tau) \text{ is ahomeomorphism}\}[5]$ and $\beta ch(X;\tau) = \{f \mid f:(X,\tau) \rightarrow (X,\tau) \text{ is a } \beta c \text{ homeomorphism}\}[5].$

In this section, we investigate some structures of $\beta ch(H;\tau|H)$ for a subspace $(H,\tau|H)$ of (X,τ) using two subgroups of $\beta ch(X,\tau)$, say $\beta ch(X, X \setminus H; \tau)$ and $\beta ch(X, X \setminus H; \tau)$ below.

Definition 2.1. For a topological space (X,τ) and subset H of X, we define the following families of maps:

- (i). $\beta ch(X, X \setminus H; \tau) = \{a | a \in \beta ch(X; \tau) \text{ and } a(X \setminus H) = X \setminus H\}.$
- (ii). $\beta \operatorname{ch}_0(X, X \setminus H; \tau) = \{a \mid a \in \beta \operatorname{ch}(X, X \setminus H; \tau) \text{ and } a(x) = x \text{ for every } x \in X \setminus H\}.$

Theorem 2.2. Let H be a subset of a topological space (X,τ) . Then

- (i) The family $\beta ch(X, X \setminus H; \tau)$ forms a subgroup of $\beta ch(X,\tau)$.
- (ii) The family $\beta ch_0(X, X \setminus H; \tau)$ forms a subgroup of $\beta ch(X, X \setminus H; \tau)$ and hence $\beta ch_0(X, X \setminus H; \tau)$ forms a subgroup of $\beta ch(X,\tau)$.

Proof. (i). It is shown obviously that $\beta ch(X, X \setminus H; \tau)$ is a non-empty subset of $\beta ch(X,\tau)$, because $1X \in \beta ch(X, X \setminus H; \tau)$. Moreover, we have that $\omega X(a,b^{-1})=b^{-1}o$ $a \in \beta ch(X, X \setminus H; \tau)$ for any elements $a, b \in \beta ch(X, X \setminus H; \tau)$, where $\omega X = \omega | (\beta ch(X, X \setminus H; \tau) \times \beta ch(X, X \setminus H; \tau))$ as ω is the binary operation of the group $\beta ch(X,\tau)$. Evidently, the identity map 1X is the identity element of $\beta ch(X, X \setminus H; \tau)$.

(ii). It is shown that $\beta ch(0(X, X \setminus H; \tau))$ is a nonempty subset of $\beta ch(X, X \setminus H; \tau)$ because $1X \in$ $\beta ch(0(X, X \setminus H; \tau))$. We have that $\omega X, 0(a,b^{-1}) = b^{-1}o$ $a \in \beta ch(0(X, X \setminus H; \tau))$ for any elements $a, b \in$ $\beta ch(0(X, X \setminus H; \tau))$, where $\omega X, 0 = \omega X | (|\beta ch(0(X, X \setminus H; \tau)) + (|\beta ch(0(X, X \setminus H; \tau))$

operation of the group $\beta ch(X, X \setminus H; \tau)$). Thus $\beta ch0(X, X \setminus H; \tau)$ is a subgroup of $\beta ch(X, X \setminus H; \tau)$ τ) and the identity map 1X is the identity element of $\beta ch_0(X, X \setminus H; \tau)$. By using (i), $\beta ch0(X, X \setminus H; \tau)$ forms a subgroup of $\beta ch(X, \tau)$. Let H and K be the subsets of X and Y respectively. For a map $f:X \rightarrow Y$ satisfying a property K=f(H), we define the following map $rH_{K}(f):H\rightarrow K$ by $rH_{K}(f)(x)=f(x)$ for every $x \in H$. Then, we have that jKo rH,K(f)= $f|H:H\rightarrow Y$, where $iK:K\rightarrow Y$ be an inclusion defined by jK(y)=y for every $y \in K$ and $f|H:H\rightarrow Y$ is a restriction of f to H defined by (f|H)(x)=f(x) for every $x \in H$. Especially, we consider the following case that X=Y, $H=K\subseteq X$ a(H)=H,b(H)=H for any maps $a,b:X \rightarrow X$. Thus rH,H(boa)=rH,H(b) o rH,H(a)holds. Moreover, if a map $a:X \rightarrow X$ is a bisection such that a(H)=H, then $rH.H:H\rightarrow H$ is bijective and rH, $H(a^{-1})=(rH,H(a))^{-1}$.

We recall well known properties on β -open sets of subspace topological spaces.

Theorem 2.3. For a topological space (X,τ) and subsets H and U of X and A \subseteq H,V \subseteq H and B \subseteq H, the following properties hold:

- (i). Arbitrary union of β -open sets of (X,τ) is β -open in (X,τ) . The intersection of an open set of (X,τ) and a β -open set in (X,τ) is β -open in (X,τ) .
- (ii). (a).If A is β -open in (X,τ) and $A \subseteq H$, then A is β -open in a subspace $(H,\tau|H)$.
- **(b).** If $H \subseteq X$ is open or α -open in (X,τ) and a subset $U \subseteq X$ is β -open in (X,τ) , then $H \cap U$ is β -open in asubspace $(H,\tau|H)$.
- (iii). Let $V \subseteq H \subseteq X$.
- (a). If H is β -open in (X,τ) , then IntH(V) \subseteq β Int(V) holds.
- **(b).** If H is β -open in (X,τ) and V is β -open in a subspace $(H,\tau^{\bullet} H)$ then V is β -open in (X,τ) . Let B• H• X. If H is β -closed in (X,τ) and B is β -closed in a subspace $(H,\tau^{\bullet} H)$, then B is β -closed in (X,τ) .
- (a). Assume that H is a open subset of (X,τ) . Then, $\beta O(X,\tau) \cdot H \cdot \beta O(H,\tau \cdot H)$ holds, where $\beta O(X,\tau) \cdot H = \{W \cdot H \cdot W \cdot \beta O(X,\tau)\}$.

- **(b).** Assume that H is a β -open subset of (X,τ) . Then, $\beta O(H,\tau \bullet H) \bullet \beta O(X,\tau) \bullet H$ holds.
- (c). Assume that H is a β -open subset of (X,τ) . Then, $\beta O(H,\tau \bullet H) = \beta O(X,\tau) \bullet H$ holds.

Proof. (i).Clear from Remark 1.1 of [1] and Theorem 2.7 of [3].

- (ii).(a).Clear.(ii-2).Its Lemma 2.5 of [1].
- (iii)(a). Let $x \cdot Int_H(V)$. There exists a subset $W(x) \in \tau$ such that $W(x) \cap H \subseteq V$. By (i), $W(x) \cap H \in \beta O(X, \tau)$. This shows that $x \in \beta Int(V)$ and so $Int_H(V) \subseteq \beta Int(V)$.
- **(b)** and (iv).Its clear from Lemma 2.7 of [1].
- (v). (b). Let $V \in \beta O(X,\tau)|H$. For some set $W \in \beta O(X,\tau), V=W \cap H$ and so we have $W \cap H \in \beta O(H,\tau|H)$ (from ii-2). Hence $V \in \beta O(H,\tau|H)$ holds.
- (b). Let $V \in \beta O(H,\tau|H)$. Since $H \in \beta O(X,\tau)$, we have $V \in \beta O(X,\tau)$ by (iii-2). Thus $V = V \cap H \in \beta O(X,\tau)|H$.
- (c). It follows from (v-1) and (v-2).

Lemma 2.4. (i).If $f:(X,\tau) \to (Y,\sigma)$ is β irresolute and a subset H is α -open in (X,τ) ,then $f|H:(H,\tau|H) \to (Y,\sigma)$ is β -irresolute.

Let (1) and (2) be properties of two maps $k:(X,\tau) \to (K,\sigma|K)$,where $K \subseteq Y$, and $jKok:(X,\tau) \to (Y,\sigma)$ as follows:

- 1) $k:(X,\tau) \to (K,\sigma|K)$ is β -irresolute.
- 2) jKok: $(X,\tau) \rightarrow (Y,\sigma)$ is β -irresolute.

Then, the following implication and equivalence hold:

- (a). Under the assumption that K is α -open in (Y,σ) , $(1)\Longrightarrow(2)$.
- (b). Conversely, under the assumption that K is β -open in (Y,σ) , $(2)\Rightarrow(1)$. (ii-3). Under the assumption that K is β -open in (Y,σ) , $(1)\Leftrightarrow(2)$.
- (ii). If $f:(X,\tau) \to (Y,\sigma)$ is β -irresolute and a subset H is α -open in (X,τ) and f(H) is β -open in (Y,σ) , then r H, f(H)(f):

 $(H,\tau|H) \rightarrow (f(H), \sigma|f(H))$ is β -irresolute.

Proof.(i). Let $V \in \beta O(Y, \sigma)$. Then, we have $(f \mid H)^{-1}(V) = f^{-1}(V) \cap H$ and $(f \mid H)^{-1}(V) \in \beta O(H, \tau \mid H)$. (Theorem 2.3 (ii-2)).

- (ii).(a) (1) \Rightarrow (2).Let $V \in \beta O(Y,\sigma)$.Since (jKok)¹(V)= $k^{-1}(V \cap K)$ and $V \cap K \in \beta O(K,\sigma|K)$ (Theorem 2.3 (ii-2)),we have that (jKok)⁻¹(V) $\in \beta O(X,\tau)$ and hence jKok is β -irresolute.
- (b) (2) \Rightarrow (1).Let $U \in \beta O(K, \sigma | K)$.Since $U \in \beta O(Y, \sigma)$ (Theorem 2.3 (iii-2)),we have $k^{-1}(U) = (jK \circ k)^{-1}(U) \in \beta O(X, \tau)$.Thus k is β -irresolute.
- (c). Obvious in the view of fact that every α -open set is β -open, it is obtained by (ii-1) and(ii-2). (iii). By (i), $f|H:(H,\tau|H) \rightarrow (Y,\sigma)$ is β -irresolute. The map f:H:(H)(f) is β -irresolute, because f|H=jf(H) or f:H:(H)(f) holds.

Definition 2.5. For an α-open subset H of (X, τ) , the following maps $(rH)^*$: $\beta ch(X, X \setminus H; \tau) \rightarrow \beta ch(H;\tau|H)$ and $(rH)^*,0$: $\beta ch0(X, X \setminus H; \tau) \rightarrow \beta ch(H;\tau|H)$ are well defined as follows (Lemma 2.4 (iii)),respectively:

 $(r_H)^*(f) = r_{H,H}(f)$ for every $f \in \beta ch(X, X \setminus H; \tau)$;

(rH)*,0(g)= rH,H(g) for every $g \in \beta ch0(X, X \setminus H; \tau)$.Indeed ,in Lemma 2.4 (iii),we assume that $X=Y, \tau=\sigma$ and H=f(H).

Then, under the assumption that H is α -open hence β -open in (X,τ) , it is obtained that rH , $H(f) \in \beta ch(H;\tau|H)$ holds for any $f \in \beta ch(X, X \setminus H;\tau)$. (resp. $f \in \beta ch(X, X \setminus H;\tau)$).

We need the following lemma and then we prove that $(rH)^*$ and $(rH)^*$,0 are onto homomorphisms under the assumptions that H is α -open and α -closed in (X,τ) .

Let $X=U1 \cup U2$ for some subsets U1 and U2 and $f1:(U1,\tau|U1) \rightarrow (Y,\sigma)$ and

f2:(U2, τ |U2) →(Y, σ) be the two maps satisfying a property f1(x)=f2(x) for every x ∈ U1∩U2. Then, a map f1 ∇ f2 is well defined as follows:

 $(f1\nabla f2)(x)=f1(x)$ for every $x \in U1$ and $(f1\nabla f2)(x)=f2(x)$ for every $x \in U2$. We call this map a combination of f1 and f2.

Lemma 2.6. For a topological space (X,τ) ,we assume that $X=U_1\cup U_2$,where U_1 and U_2 are subsets of X and $f_1:(U_1,\tau|U_1)\to (Y,\sigma)$ and $f_2:(U_2,\tau|U_2)\to (Y,\sigma)$ be the two maps satisfying a property $f_1(x)=f_2(x)$ for every $x\in U_1\cap U_2$. Then if $U_i\in\beta O(X,\tau)$ for each $i\in\{1,2\}$ and f_1 and f_2 are β -irresolute, then its combination $f_1\nabla f_2:(X,\tau)\to (Y,\sigma)$ is β - irresolute.

Proof. Its on similar lines in ([1], Theorem 2.8).

Theorem 2.7. Let H be a subset of a topological space (X,τ) . (i).(a).If H is α -open in (X,τ) ,then the maps $(rH)^*$:

 $\beta ch(X, X \setminus H; \tau) \rightarrow \beta ch(H; \tau | H)$ and $(rH)^*, 0$: $\beta ch0(X, X \setminus H; \tau) \rightarrow \beta ch(H; \tau | H)$ are homomorphism of groups.Morever $(rH)^* \mid \beta ch0(X, X \setminus H; \tau) = (rH)^*, 0$ holds(Definition 2.5). **(b).** If H is α-open and α-closed in (X, τ) , then the maps $(rH)^*$: $\beta ch(X, X \setminus H; \tau) \rightarrow \beta ch(H; \tau | H)$ and $(rH)^*0$: $\beta ch0(X, X \setminus H; \tau) \rightarrow \beta ch(H; \tau | H)$ are onto homomorphism of groups.

- (ii). For an α -open subset H of (X,τ) , we have the following isomorphisms of groups: (ii-1). $\beta ch(X, X \setminus H; \tau) | Ker(r_H)^*$ is isomorphic to $Im(r_H)^*$;
- (b). $\beta \text{ch0}(X, X \setminus H; \tau)$ is isomorphic to $\text{Im}(rH)^*, 0$ holds.where $\text{Ker}(rH)^*=\{a \in \beta \text{ch}(X, X \setminus H; \tau) | (rH)^*(a)=1X\}$ is a normal subgroup of $\beta \text{ch}(X, X \setminus H; \tau)$; $\text{Im}(rH)^*=\{(rH)^*(a) \mid a \in \beta \text{ch}(X, X \setminus H; \tau)\}$ and $\text{Im}(rH)^*, 0=\{(rH)^*, 0 \mid b \in \beta \text{ch0}(X, X \setminus H; \tau)\}$ are subgroups of $\beta \text{ch}(X, \tau)$.
- (iii). For an α -open and α -closed subset H of (X,τ) , we have the following isomorphisms of groups:
- (c). β ch(H; τ |H) is isomorphic to β ch(X, X \ H; τ) |Ker(τ H)*. (iii-2). β ch(H; τ |H) is isomorphic to β ch0(X, X \ H; τ).

Proof. (i).

(a). Let $a,b \in \beta ch(X, X \setminus H; \tau)$. Since H is α -open in (X,τ) ,the maps $(rH)^*$ and $(rH)^*$,0 are well defined(Definition 2.5). Then we have that $(rH)^*(\omega X(a,b)) = (rH)^*(boa) = rH,H(boa) = rH,H(b)$ o $rH,H(a) = \omega X((rH)^*(a), (rH)^*(b))$ hold, where ωH is a binary operation of $\beta ch(H;\tau|H)$ ([5] Theorem 4.4 (iv)). Thus $(rH)^*$ is a homomorphism of groups. For the map $(rH)^*0$: $\beta ch0(X, X \setminus H; \tau) \rightarrow \beta ch(H;\tau|H)$, we

have that $(rH)^*$, $(\omega X,0(a,b))=(rH)^*$, $(\omega X)=(rH,H(ba))=(rH,H(ba))=(rH,H(b))=(rH,H(a))=(\omega X)=(rH)^*$, $(rH)^*$

(b).In order to prove that (rH)* and (rH)*0 are onto, let $h \in \beta ch(H;\tau|H)$. Let $jH: (H;\tau|H)$ \rightarrow (X, τ) and JX \ H: (X \ H, τ | X \ H) \rightarrow (X, τ) be the inclusions defined jH(x)=x for every $x \in H$ and $JX \setminus H(x)=x$ for every $x \in X \setminus H$. We consider the combination h1=(jHoh) ∇ (j X \ H o 1 X \ H): $(X,\tau) \rightarrow (X,\tau)$. By Lemma 2.4 (ii-1), under the assumption of α -openness on H, it is shown that two maps iH oh : $(H;\tau|H) \rightarrow (X,\tau)$ and jH oh⁻¹: (H; τ |H) \rightarrow (X, τ) are β -irresolute; moreover under the assumption of α -openness on $X \setminus H$, $JX \setminus H$ o $1X \setminus H$: $(X \setminus H,\tau \mid X \setminus H)$ \rightarrow (X, τ) is β -irresolute. Using lemma 2.6, for a β - open cover $\{H, X \setminus H\}$ of X, the combination above h1: $(X,\tau) \rightarrow (X,\tau)$ is β -irresolute. Since h1 is bijective, its inverse map $h_1^{-1}=(iHoh^{-1})\nabla(i$ $X \setminus H \text{ o } 1 \times X \setminus H$) is also β - irresolute. Thus under the assumption that both H and $X \setminus H$ are β -open in (X,τ) , we have $h1 \in \beta ch(X,\tau)$. Since h1(x)=xfor every point $x \in X \setminus H$, we conclude that $h_1 \in \beta ch_0(X, X \setminus H; \tau)$ and so $h_1 \in \beta ch(X, X \setminus H; \tau)$ τ). Moreover, $(rH)^*,0$ (h1)= $(rH)^*(h1)=$ $r_{H,H}((h_1)=h, hence (r_H)^* and (r_H)^*,0 are onto,$ under the assumption that H is α -open and α closed subset of (X,τ) .

(ii).By (a) above and the first isomorphism theorem of group theory, it is shown that there are group isomorphism below, under the assumption that H is α -open in (X,τ) :(*). β ch $(X, X \setminus H; \tau)$ |Ker(rH)* is isomorphic to Im(rH)*; and (**). β ch $(X, X \setminus H; \tau)$ |Ker(rH)*0 is isomorphic to Im(rH)*,0where Ker(rH)*0 = {a \in β ch $(X, X \setminus H; \tau)$ |(rH)*0(a)=1X}. Moreover, under the assumption of α -openness on H, it is shown that Ker(rH)*0 = {1H}. Therefore, using (**) above, we have the

(iii).By (b) above, it is shown that (rH)* and

isomorphism(ii-2).

(rH)*,0 are onto homomorphism of groups, under the assumption that H is α -open and α -closed in (X,τ) . Therefore ,by (ii) above, theisomorphisms (iii-1) and (c) are obtained.

Remark 2.8. Under the assumption that H is α -

open and α-closed (X, τ), Theorem2.7(iii)isproved.Let(X,τ)beatopologicals pacewhere $X = \{a,b,c\}$ and $\tau = \{\phi,X,$ $\{a\},\{b,c\}\},$ and $(H;\tau|H)$ is a subspace of (X,τ) , where $H=\{a\}$. Then $\beta O(X,\tau)=P(X)$ (the power set of X) and H is α -open and α -closed in (X,τ) . We apply Theorem 2.7 (iii) to the present case, we have the group isomorphisms. Directly, we obtain the following date on groups: $\beta ch(X,\tau)$ is isomorphic to S3,the symmetric group of degree 3, βch(X, $X\backslash H;\tau = \{1\chi,h_a\}, Ker(r_H)^* = \{1\chi,h_a\}, \beta ch(H;\tau\backslash H)$ $=\{1H\}$ andso β ch $(X,X\backslash H;\tau)=$ $\{1X\}$, where ha: $(X,\tau) \rightarrow (X,\tau)$ is a map defined by ha(a)=a, ha(b)=c and ha(c)=b. Therefore in this example, we have $\beta ch(H;\tau|H)$ isomorphic to $\beta ch(X, X \setminus H;\tau)$ $|Ker(rH)^*$ and $\beta ch(H;\tau|H)$ is isomorphic to $\beta ch_0(X, X \setminus H; \tau)$. Moreover we have

(iii). Even if a subset H of a topological space (X,τ) is not α -closed and it is α -open, we have the possibilities to investigate isomorphisms of groups corresponding to a subspace $(H,\tau|H)$ and $(rH)^*$ using Theorem 5.7(ii). For example, Let (X,τ) be a topological space where $X=\{a,b,c\}$ and $\tau=\{\phi, X, \{a,b\}\}$,and $(H;\tau|H)$ is a subspace of (X,τ) ,where $H=\{a,b\}$. Then $\beta O(X,\tau)=P(X)$ (the power set of X) and X is X-open butnot X-closed in X-closed in

 $h(X,\tau) = \{1X, h_a\}.$

α-closed in (X,τ). By theorem 2.7(1)(1-1), the maps (rH)*: β ch(X, X \ H;τ) \rightarrow β ch(H;τ|H) and (rH)*,0: β ch0(X, X \ H; τ) \rightarrow β ch(H;τ|H) are homomorphism of groups and by theorem 5.7(ii) two isomorphisms of groups are obtained:

(*-1). $\beta ch(X, X \setminus H; \tau)/Ker(r_H)^*$ is isomorphic to $Im(r_H)^*$. (*-2). $\beta ch(0(X, X \setminus H; \tau)/Ker(r_H)^*$ is isomorphic to $Im(r_H)^*$,0.

We need notation on maps as follows: let hc: $(X,\tau) \to (X,\tau)$ and $t_{a,b}$: $(H,\tau|H) \to (H,\tau|H)$ are

the maps defined by hc (a)=b, hc(a)=b, hc(c)=c and ta,b(a)=b, ta,b(b)=a, respectively. Then it is directly shown that $\beta ch(X, X \setminus H; \tau) = \{1X,$ h_c } which is isomorphic to Z_2 , $(h_c)^2 = 1_X$, and $Ker(r_H)^*=\{a \in \beta ch(X, X \setminus H; \tau) | (r_H)^*(a)=$ $1_{H}=\{a\in\{1_{X}, h_{c}\}|(r_{H})^{*}(a)=$ $1H = \{1X$ } because (rH)*(1X)=1H and $(rH)*(h_c)=$ ta,bnot equalto1H .Byusing(*-1)above,Im(rH)*isisomorphicto β ch(X,X\H; τ)={ $1X,h_c$ and so $Im(r_H)^*=\{1H, r_H,H(h_c)\}=\{1H,$ ta,b\). Since $Im(rH)^* \subseteq \beta ch(H;\tau|H) \subseteq \{1H,$ ta,b, we have that $Im(rH)^* = \beta ch(H,\tau|H) = \{1H,$ ta,b} and hence (rH)*is onto. Namely, we have an isomorphism $(r_H)^*$: $\beta ch(X, X \setminus H; \tau)$ is isomorphic to βch(H ;τ|H) which is isomorphic to Z2.Moreover it is shown that β ch0(X, X \ H; τ)={a \in βch(X, X \ H; τ)|a(x)=x for any $x \in \{c\}\} = \{1X, h_c\} = \beta ch(X, X \setminus H; \tau) \text{ hold and so}$ $(r_H)^* = (r_H)^*,0 \text{holds}.$

REFERENCES

- [1] M.E.Abd El-Monsef, S.N.El-Deeb and R.A.Mahmoud, β-opensets and β-continuous mappings, Bull.Fac. Sci.AssintUniv.,12
- [2] M.E.Abd El-Monsef,
 R.A.Mahmoudand
 E.R.Lashin, β-closure and
 β-interior, J.Fac.Edu.Ain shams Univ.,10
 (1986), 235-245.
- [3] D.Andrijevic, Semi-preopen sets, Mat. Vesnik., 38 (1) (1986),24-32.
- [4] S.C.Arora, Sanjay Tahiliani and H.Maki, On π generalized β-closed sets in topological spaces II, Scientiae Mathematica Japonice, 71 (1)(2010),43-54.
- [5] R.A.Mahmoud and Abd-El-Monsef, β-irresolute and β-topological invariant, Proc. Pakistan. Acad. Sci., 27 (1990),285-296.
- [6] O.Njastad, On some class of nearly open sets, Pacific. Jour. Math., 15 (1965), 961-970.

(1983), 77-90.