
ISSN NO. 2456-3129  
 

International Journal of Engineering, Pure and Applied Sciences,  
Vol. 3, No. 1, March-2018 

 

30 
 

Study and Analysis of Dynamical Models of Plant 
Growth Analysis in Calculus  

Dr.Suresh Kumar Sahani, Kameshwar Sahani 

Department of Mathematics, Model Multiple College, Nepal 
Department of Civil and Geomatics Engineering, Kathmandu University, Nepal 

Email: sureshsahani54@gmail.com      
 
Abstract- This paper presents the study of dynamical models of plant growth analysis in calculus. It also the 
studies modeling of plants, dynamical models, first dimensional model with branching, without branching and 
their results. 

Keywords:  Plants, growths, model, dynamical, one-dimensional 

1. INTRODUCTION 

1.1 Modelling plant growth 
In the middle ages, Leonardo da Vinci observed the 
seasonal periodicity of growth and some features of 
plant forms [1].Theories of phyllotaxis, which can be 
defined as “a construction determined by organs, parts 
of organs, or primordial of plants” [2] appear already 
in the 17th century. D’ Arcy Thompson reviewed early 
theories [1] and R.V. Jean contemporary theories of 
phyllotaxis [2].The best mechanism of pattern 
formation in mathematical biology is related to 
reaction - diffusion systems and Turing structures [3], 
[4], and the discussion below. However, there is no 
biological evidence that this mechanism is really 
involve in biological pattern formation [2], [5].Some 
otherapproaches use the optimization mechanism. For 
example, the branching pattern in plants can be 
related to maximization of light interception [6]. Plant 
topology and design are studied in [7], [8]. Some 
other aspects of plant modeling can be found in the 
Proceedings of the Workshop on Plant Models [9]. 
There are several recent experimental works that 
establish a relationship between expression of certain 
genes and formation of plant organs [10]. If L (t) is 
the plant size that depends on time t, then we can 
consider the empirical equation. 

ୢ୐
ୢ୲

 = F(L), 
Where F can be proportional to L (autocatalytic 
growth), or be some constant (linear            growth, of 
F(L) =aL(L0 –L), where a and  Lo are parameters [11], 
[12]. Such kinetic equations have been proposed since 
the early 20th century [1], with no significant progress 
since then. It is interesting to note that D’Arcy 
Thompson discusses autocatalytic growth in relation 
to chemical kinetics and plant hormones. 

 

 

1.2 Dynamic model 
One of the most important features of plants, for 
purposes of modelling them, is that proliferating cells 
are strongly localized. The growing part of the plant 
where cells divide is called the meristem. The primary 
or apical meristem is located at the very end of 
growing shoots and represents a narrow layer of cells 
with a more or less constant width for each particular 
plant. The biological mechanism that provides the 
localization of the apical meristem is related to the 
expression of certain genes [13]. 
Some parts of the primary meristem can remain in the 
internodes. Under certain conditions, determined by 
plant hormones, they can lead to the appearance of 
buds that can develop into branches. The secondary 
meristem, or cambium, is responsible for width-wise 
growth of the plant. 
If we consider only the apical meristem, then we can 
say that cell proliferation and growth determine plant 
growth. Outside this narrow layer, cells differentiate; 
they cannot divide any more, and they serve to 
conduct biological products. Cell division and growth 
are controlled by external signals called growth and 
mitosis factors. Each of them is a generic name for a 
number of biological products. In particular, mitosis 
factors tell the cell when it should go from a rest state, 
where it can remain an indefinitely long time, to a 
division cycle. In some cases, the same molecule can 
play both roles. In what follows we will not 
distinguish between these two factors and will call 
them for brevity GM-factors. They are produced in 
meristemic cells and can be transmitted between 
neighboring cells. 
The relatively simple structure of plants, where the 
growing part is strongly localized, suggests very 
natural mathematical models describing their growth. 
We describe plant growth with free boundary 
problems where the motion of the interface 
corresponds to the displacement of the apical 
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meristem. The speed of the growth,that is of the 
interface motion, is determined by diffusion and 
convective fluxes of nutrients in the plant and by a 
self-accelerating production of plant growth factors in 
the meristem [14]. 
Thus the model suggested in this work is based on the 
following biological facts and mathematical 
approximations: 
a). The growing part of the plant, or apex, contains a 

narrow exterior part, the meristem where cells 
proliferate providing the plant growth. This layer 
has a constant width and consists of an 
approximately constant number of cell layers 
specific to each plant. Since it is very small 
compared to the whole plant, it will be considered 
as a mathematical surface. The displacement of 
this surface corresponds to the plant growth. 

b). The appearance of new cells implies that old cells 
exit this external layer after some time and 
become a part of the internal plant tissue. They 
differentiate, that is, they change their functions. 
They cannot divide any more, and they serve to 
conduct nutrients to the meristem. 

c). The proliferation rate is determined by the 
concentration of nutrients and of GM-factors in 
the meristem. The GM-factors are produced in 
the meristem. The rate of their production is self-
accelerationg. They can be transmitted between 
neighboring cells [13]. 

d). Appearance of new buds is determined by 
concentrations of certain plant hormones [11], 
[15]. The hormones are produced either in the 
growing parts of the plant (in our case in the 
meristem, there are no leaves in the model), or in 
the root and supplied to the plant above with the 
flow of nutrients. 

Some more specific details of the model will be 
discussed below. 

1.3. Results: 1D case, In the next section we study a 
one-dimensional model without branching. The 
growing plant is represented as an interval with its left 
end point fixed at 0x  and its right end point at 

)(tLx  . The length )(tL  is a function of time. 

Nutrients enter through 0x  and are transported 
through the interval by convective and diffusive 
fluxes. The speed of growth )(')( tLtV   depends 

on the concentration C  of nutrients and on the 
concentration )(tR  of the GM-factor at )(tLx  . 
The production of the GM-factor is described by the 
equation 
 ୢୖ

ୢ୲
 = Cg(R) −σ R      (1.2) 

The typical form of the function )(Rg  is shown in 
Figure 1 though we often use a smooth function,  is 
a parameter. Its first derivative increases at some 
interval of R. This allows us to describe an auto-

catalytic production of the GM-factor. The second 
term in the right-hand side of this equation describes 
consumption or destruction of the factor. 
Another essential property of the function )(Rg  is 

related to the value of its derivative at 0R . 
Assuming that the dimensionless concentration C  
changes between 0 and 1 with 1C at 1x , we 
choose )0('g  slightly greater than  . Therefore, if 

the concentration C  of nutrients at the growing end 
is small, then the GM-factor will not be produced. 
Moreover, its concentration will be decreasing. If C  
is close to its maximal value, then the right-hand side 
in (1.2) becomes positive, and the concentration of the 
GM-factor will grow. 
The growth rate V is considered as a given function 
of the GM-factor, )( RfV  . For simplicity, we 
suppose that it zero for 

01 RRR  . Thus, the rate 
of plant growth equals zero for small concentrations 
of the GM-factor, and some positive constant for large 
concentrations. 
In the oscillating mode, periods of growth alternate 
with periods of rest. During periods of growth, the 
nutrients are consumed and the concentration of the 
GM-factor in the meristem is high. During the periods 
of rest, the concentration of the GM-factor is low, and 
the concentration of nutrients increases. The number 
of periods of growth strongly depends on the 
parameters. It can vary from one to probably infinity. 
After a number of periods of growth a steady state is 
reached, and the length L(t) does not change any 
more. 
The increase in length is approximately the same 
during each period of growth. The final plant length is 
determined by the number of growth periods. The 
periods of rest increase with time since a larger plant 
needs more time to transfer nutrients from the root to 
the meristem. Oscillations in plant growth can be 
related to endogenous rhythms, i.e., the rhythms that 
occur under constant external conditions. 
We briefly explain the mechanism of the oscillations. 
It can be verified that there exist two continuous 
families of stationary solutions; stable and unstable 
(see Annexe 3). The solution of the evolution problem 
approaches first an unstable solution along its stable 
manifold and then diverges from it along its unstable 
manifold. The it approaches in the same way another 
unstable solution and so on. After several such cycles 
it finally approaches a stable stationary solution and 
does not changes after that. The number of cycles 
depends on the parameters and on the initial 
conditions. 

2. 1D CASE WITH BRANCHING 
We model here a growing plant as a system of 
intervals, which we will can branches. The number 
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and location of branches is not given a priori. They 
will appear and grow according to some rules. In fact, 
each branch grows according to the same mechanism 
described above in the one-dimensional case without 
branching. The difference is that all branches except 
for the first one start from another branch and not 
from the root. The opposite end of the branch 
corresponds to the apical meristem. The end point of 
each branch has its own value of GM-factor 
concentration described by the equation similar to 
(1.2). 
We need to impose two additional conditions on the 
concentration of nutrients at the points of branching, 
that is, the point where another branch starts. The first 
one is the continuity of the concentration, and the 
second one is the conservation of fluxes (see Section 
4). To write this relation, we need to know the relation 
between cross section areas of branches below and 
above the branching point. This question also 
represents an independent interest. It appears that 
there is conservation of cross section areas 
asymptotically for a long time. It is satisfied with 
good accuracy in actual trees. 
Appearance of new branches in the model occurs 
according to the following mechanism. First, there is a 
new bud that can appear if some conditions on the 
concentrations of plant hormones are satisfied. The 
bud is considered as a small branch: it is connected to 
another branch by one end point, and it has is apical 
meristem at the other end point. The distribution of 
nutrient inside the bud and the value of the GM-factor 
determine whether it starts growing. 
We consider two plant hormones in the model. One of 
them corresponds to auxin and another one to 
cytokinin. Both are produced in the growing parts of 
the plant, in our case in the apical meristem, and are 
transported through the whole plant. It is known that 
these two hormones play an important role in 
formation of new buds (see [11]). However, the 
specific form of the branching condition is not known. 
We discuss this question in Section 4 and suggest 
branching conditions which seem to give the results in 
agreement with biological observations. 
We observe a wide variety of plant forms and study 
more specifically the question of apical domination. 

3. 1D MODEL WITHOUT BRANCHING 

3.1. Model 
We consider in this section the one-dimensional case 
justified if the length (or height) L of the plant is 
essentially greater than the diameter of its trunk. 
Hence we consider the interval )(0 tLx   with 
the length depending on time. The left endpoint 

0x corresponds to the root. Its role is to provide 
the flux of nutrients taken into account through the 
boundary condition. We do not model the root growth 
here. Therefore the left boundary is fixed. The right 

end point, )(tLx   corresponds to the apex. Its 
width is much less than that of the plant. We suppose 
in the model that it is a mathematical point. The value 

)( tL  increases over time. According to the 
assumption above, the growth rate is determined by 
the concentration of metabolites at )(tLx  , which 

we denote by R . Thus 

 )(Rf
dt
dL

                  (2.1) 

The function f(R) will be specified below. 
We recall that the interval )(0 tLx   corresponds to 
differentiated cells that conduct nutrients from the 
root to the apex. We suppose that they are in a liquid 
solution. Denote by C their concentration, which is a 
function of x and t . Its evolution is described by the 
diffusion-advection equation. 
 .2

2
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
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(2.2) 

Here u is the velocity of the fluid, and d is the 
diffusion coefficient. Assuming that the fluid is 
incompressible and fills the xylem uniformly (the part 
of the plant tissue conducting nutrients from below to 
above and located inside the cambium layer), we 
obtain 

 

 
We complete equation (2.2) by setting the boundary 
conditions 
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The second boundary condition shows that the flux of 
nutrients from the main body of the plant to the 
meristem is proportional to the concentration C (L, t). 
This is a conventional relation for mass exchange at 
the boundary, Robin boundary conditions. The factor 
g(R) shows that this flux can be regulated by 
proliferating cells. We discuss this assumption as well 
as the form of the function g(R) below. 
We now derive the equation describing the evolution 
of R. At this point we need to return to the model in 
which the width of the meristem is finite. We denote 
it by h. Then we have 
 .)( RCRg

dt
dRh 

  
(2.4) 

The first term in the right-hand side of this equation 
describes production of the GM-factor R in the 
meristem. The second term corresponds to its 
consumption. 

u



System of equations (2.1)
dimensional model of plant growth 

a) "continuous medium" assumptions of mass 
conservation (for 
of the flux 
and b) a "biological" assumption that there is a 
chemical species R, the plant growth and mitosis 
factor, which is produced in the meristem and which 
determines the plant growth.
of the functions 
piecewise constant function equal to 0 if R is less than 
a critical value 

constant f
means that the growth begins if the concentration of 
the plant growth factor exceeds some critical value.

The production of the growth factor R is assumed to 
be auto-catalytic. To simplify the modelling we 
consider a piece
1b). In some cases we also consider smooth 
functions 
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Finally from (2.4)

This equation should be completed by 

Such that
We assume in what follows that
for all L sufficiently large, there exists a solution R of 
equation (2.5) with condition (2.6). Depending on the 
function 
solution with the same value of L.
Denote by F(R) the left
standard linear stability analysis shows that the 
stationary solution is stable if 
for a solution R.

4. NUMERICAL SIMULATIONS
The functions f and g are characterized by two 
critical 
Values: the length L (t) increases if R>R
production of 
behaviour of the system is different in two cases, R
> R g and R 
All simulations are carried out for d = 0.001 
=0.009 su/tu. Here
and the initial length L

4.1. Linear growth
 If R f > R
function of time. It reaches its stationary value, and 
then does not change (Figure 2). The final length 
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L f changes from 2.54 to 2.50. If h = 2.50. If h = 
0.001 and L
length decreases from L
The value of R
The concentration R is monotonically decreasing 
over time, approaching its final value  
Therefore, the results of the simulation remain the 
same if the function g
0.01). 

4.2. Periodic growth
 The behaviour of the solution to problem (2.1)
is different if R
growth is periodic is periodic in time (Figure 3a). 
Short periods of growth are are separated by long 
time intervals where the long time intervals where 
the length does not change. The length is 
approximately the same during all
except for the first one, where it is one, where it is 
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the length does not change. The length is 
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assumed in the simulations is 0.01. 
The concentration R is monotonically decreasing 

0.05. 
Therefore, the results of the simulation remain the 

g ≡ 

(2.4) 
. In this case the case the 

growth is periodic is periodic in time (Figure 3a). 
Short periods of growth are are separated by long 
time intervals where the long time intervals where 
the length does not change. The length is 

periods of growth 
except for the first one, where it is one, where it is 
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about two times greater. The periods without growth 
become longer over time. This is related to the 
growing length of the interval. 

 

 
Fig.2. Linear growth 

 
For larger L it takes more time for the concentration 
C (L, t) to become large enough for R (t) to increase. 
Figure 3b shows the function R (t). 

 
Fig.3.Perioidic growth 

Contrary to the previous case, the final length L f is 
very sensitive to the value of h (Figure 4). For h = 
0.001 L f = 14.56, for h = 0.003. L f = 4.19. The 
number of periods of growth also varies with h. If for 
two different values of h the number of periods of 
growth is the same, then the final length depends on 
h weakly. 
The dependence of the final length on the initial 
length remains weak. For h = 0.003, as Lo changes 
from 0.1 to 1.0 L f changes from 4.19 to 4.61. 
We recall that the first boundary condition in (2.3) 
determines the amount of nutrient available for the 
plant. The value of the concentration at the left 
endpoint influences the number of growth intervals 
and the final plant length. If we decrease the 
boundary condition, the length also decreases 
(Figure 4) 

 

 
Fig.4. Dependence of the final length on h for 

different co 
 

Conclusion 
Genetic engineers might realize the requirement of 
derivatives in making accurate calculation of number 
of cells that occur in somatic cell that is brought into 
use to manufacture a carbon-copy of the living body 
human or non- human of which very cell has been 
taken. The growth rate of somatic cell can very 
accurately be estimated by making of derivatives. 
Bio-technology makes use of derivational calculus to 
obtain accurate and precise number value. Rate 
mutation, reproduction of nucleotides in cell division 
and their estimate value can be obtained in precise 
and accurate numerical value by using derivatives.  
Derivatives are brought in to use to measure different 
sorts of biological phenomenon what occur in nature 
with to different extremes what we call maxima and 
minima. Exact calculation of these two extremities 
can be made by using derivational equations. Such 
types of derivational equation enable them to 
determine the exact measurement and evaluation of 
the speed which the very process supposed to have 
occurred. Cytological processes can also exhibit the 
variations in the number of organelles. The speed 
with which reproduction and population 
enhancement has occurred can very exactly be 
measured by using derivatives. 
The growing part of the plant, or apex, contains a 
narrow exterior part, the meristem where cells 
proliferate providing the plant growth. This layer has 
a constant width and consists of an approximately 
constant number of cell layers specific to each plant. 
Since it is very small compared to the whole plant, it 
will be considered as a mathematical surface. The 
displacement of this surface corresponds to the plant 
growth. The appearance of new cells implies that old 
cells exit this external layer after some time and 
become a part of the internal plant tissue. They 
differentiate, that is, they change their functions. 
They cannot divide any more, and they serve to 
conduct nutrients to the meristem. 
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